private static Mesh getMeshFromGrid(final ResultGrid resultGrid, float worldScale) { Vector3f translate = new Vector3f(resultGrid.minLocation.x, resultGrid.minLocation.y, resultGrid.minLocation.z); float scale = 1.0f / worldScale; Mesh mesh = MarchingCubesMesher.createMesh(resultGrid.dataGrid, scale, translate); // Setup bone weight buffer FloatBuffer weights = BufferUtils.createFloatBuffer(mesh.getVertexCount() * 4); VertexBuffer weightsBuf = new VertexBuffer(VertexBuffer.Type.HWBoneWeight); weightsBuf.setupData(VertexBuffer.Usage.Static, 4, VertexBuffer.Format.Float, weights); mesh.setBuffer(weightsBuf); // Setup bone index buffer ByteBuffer indices = BufferUtils.createByteBuffer(mesh.getVertexCount() * 4); VertexBuffer indicesBuf = new VertexBuffer(VertexBuffer.Type.HWBoneIndex); indicesBuf.setupData(VertexBuffer.Usage.Static, 4, VertexBuffer.Format.UnsignedByte, indices); mesh.setBuffer(indicesBuf); Vector3f v1 = new Vector3f(); Vector3f v2 = new Vector3f(); Vector3f v3 = new Vector3f(); for (int i = 0; i < mesh.getTriangleCount(); i++) { mesh.getTriangle(i, v1, v2, v3); putBoneData(weights, indices, v1, resultGrid, scale, translate); putBoneData(weights, indices, v2, resultGrid, scale, translate); putBoneData(weights, indices, v3, resultGrid, scale, translate); } return mesh; }
public RenderDeviceJme(NiftyJmeDisplay display) { this.display = display; quadColor = new VertexBuffer(Type.Color); quadColor.setNormalized(true); ByteBuffer bb = BufferUtils.createByteBuffer(4 * 4); quadColor.setupData(Usage.Stream, 4, Format.UnsignedByte, bb); quad.setBuffer(quadColor); quadModTC.setUsage(Usage.Stream); // Load the 3 material types separately to avoid // reloading the shader when the defines change. // Material with a single color (no texture or vertex color) colorMaterial = new Material(display.getAssetManager(), "Common/MatDefs/Misc/Unshaded.j3md"); // Material with a texture and a color (no vertex color) textureColorMaterial = new Material(display.getAssetManager(), "Common/MatDefs/Misc/Unshaded.j3md"); // Material with vertex color, used for gradients (no texture) vertexColorMaterial = new Material(display.getAssetManager(), "Common/MatDefs/Misc/Unshaded.j3md"); vertexColorMaterial.setBoolean("VertexColor", true); // Shared render state for all materials renderState.setDepthTest(false); renderState.setDepthWrite(false); }
protected ByteBuffer readByteBuffer(byte[] content) throws IOException { int length = readInt(content); if (length == BinaryOutputCapsule.NULL_OBJECT) return null; if (BinaryImporter.canUseFastBuffers()) { ByteBuffer value = BufferUtils.createByteBuffer(length); value.put(content, index, length).rewind(); index += length; return value; } else { ByteBuffer value = BufferUtils.createByteBuffer(length); for (int x = 0; x < length; x++) { value.put(readByteForBuffer(content)); } value.rewind(); return value; } }
public static VertexBuffer convertToUByte(VertexBuffer vb) { FloatBuffer fb = (FloatBuffer) vb.getData(); ByteBuffer bb = BufferUtils.createByteBuffer(fb.capacity()); convertToUByte(fb, bb); VertexBuffer newVb = new VertexBuffer(vb.getBufferType()); newVb.setupData(vb.getUsage(), vb.getNumComponents(), Format.UnsignedByte, bb); newVb.setNormalized(true); return newVb; }
public static void convertToFixed(Geometry geom, Format posFmt, Format nmFmt, Format tcFmt) { geom.updateModelBound(); BoundingBox bbox = (BoundingBox) geom.getModelBound(); Mesh mesh = geom.getMesh(); VertexBuffer positions = mesh.getBuffer(Type.Position); VertexBuffer normals = mesh.getBuffer(Type.Normal); VertexBuffer texcoords = mesh.getBuffer(Type.TexCoord); VertexBuffer indices = mesh.getBuffer(Type.Index); // positions FloatBuffer fb = (FloatBuffer) positions.getData(); if (posFmt != Format.Float) { Buffer newBuf = VertexBuffer.createBuffer(posFmt, positions.getNumComponents(), mesh.getVertexCount()); Transform t = convertPositions(fb, bbox, newBuf); t.combineWithParent(geom.getLocalTransform()); geom.setLocalTransform(t); VertexBuffer newPosVb = new VertexBuffer(Type.Position); newPosVb.setupData(positions.getUsage(), positions.getNumComponents(), posFmt, newBuf); mesh.clearBuffer(Type.Position); mesh.setBuffer(newPosVb); } // normals, automatically convert to signed byte fb = (FloatBuffer) normals.getData(); ByteBuffer bb = BufferUtils.createByteBuffer(fb.capacity()); convertNormals(fb, bb); normals = new VertexBuffer(Type.Normal); normals.setupData(Usage.Static, 3, Format.Byte, bb); normals.setNormalized(true); mesh.clearBuffer(Type.Normal); mesh.setBuffer(normals); // texcoords fb = (FloatBuffer) texcoords.getData(); if (tcFmt != Format.Float) { Buffer newBuf = VertexBuffer.createBuffer(tcFmt, texcoords.getNumComponents(), mesh.getVertexCount()); convertTexCoords2D(fb, newBuf); VertexBuffer newTcVb = new VertexBuffer(Type.TexCoord); newTcVb.setupData(texcoords.getUsage(), texcoords.getNumComponents(), tcFmt, newBuf); mesh.clearBuffer(Type.TexCoord); mesh.setBuffer(newTcVb); } }
private void initOpenCL1() { clContext = context.getOpenCLContext(); Device device = clContext.getDevices().get(0); clQueue = clContext.createQueue(device).register(); // create kernel Program program = null; File tmpFolder = JmeSystem.getStorageFolder(); File binaryFile = new File(tmpFolder, getClass().getSimpleName() + ".clc"); try { // attempt to load cached binary byte[] bytes = Files.readAllBytes(binaryFile.toPath()); ByteBuffer bb = BufferUtils.createByteBuffer(bytes); program = clContext.createProgramFromBinary(bb, device); program.build(); LOG.info("reuse program from cached binaries"); } catch (java.nio.file.NoSuchFileException ex) { // do nothing, cache was not created yet } catch (Exception ex) { LOG.log(Level.INFO, "Unable to use cached program binaries", ex); } if (program == null) { // build from sources String source = "" + "__kernel void ScaleKernel(__global float* vb, float scale)\n" + "{\n" + " int idx = get_global_id(0);\n" + " float3 pos = vload3(idx, vb);\n" + " pos *= scale;\n" + " vstore3(pos, idx, vb);\n" + "}\n"; program = clContext.createProgramFromSourceCode(source); program.build(); // Save binary try { ByteBuffer bb = program.getBinary(device); byte[] bytes = new byte[bb.remaining()]; bb.get(bytes); Files.write(binaryFile.toPath(), bytes); } catch (UnsupportedOperationException | OpenCLException | IOException ex) { LOG.log(Level.SEVERE, "Unable to save program binaries", ex); } LOG.info("create new program from sources"); } program.register(); kernel = program.createKernel("ScaleKernel").register(); }
public class LwjglGL1Renderer implements GL1Renderer { private static final Logger logger = Logger.getLogger(LwjglRenderer.class.getName()); private final ByteBuffer nameBuf = BufferUtils.createByteBuffer(250); private final StringBuilder stringBuf = new StringBuilder(250); private final IntBuffer ib1 = BufferUtils.createIntBuffer(1); private final IntBuffer intBuf16 = BufferUtils.createIntBuffer(16); private final FloatBuffer fb16 = BufferUtils.createFloatBuffer(16); private final FloatBuffer fb4Null = BufferUtils.createFloatBuffer(4); private final RenderContext context = new RenderContext(); private final NativeObjectManager objManager = new NativeObjectManager(); private final EnumSet<Caps> caps = EnumSet.noneOf(Caps.class); private int maxTexSize; private int maxCubeTexSize; private int maxVertCount; private int maxTriCount; private int maxLights; private boolean gl12 = false; private final Statistics statistics = new Statistics(); private int vpX, vpY, vpW, vpH; private int clipX, clipY, clipW, clipH; private Matrix4f worldMatrix = new Matrix4f(); private Matrix4f viewMatrix = new Matrix4f(); private ArrayList<Light> lightList = new ArrayList<Light>(8); private ColorRGBA materialAmbientColor = new ColorRGBA(); private Vector3f tempVec = new Vector3f(); protected void updateNameBuffer() { int len = stringBuf.length(); nameBuf.position(0); nameBuf.limit(len); for (int i = 0; i < len; i++) { nameBuf.put((byte) stringBuf.charAt(i)); } nameBuf.rewind(); } public Statistics getStatistics() { return statistics; } public EnumSet<Caps> getCaps() { return caps; } public void initialize() { if (GLContext.getCapabilities().OpenGL12) { gl12 = true; } // Default values for certain GL state. glShadeModel(GL_SMOOTH); glColorMaterial(GL_FRONT_AND_BACK, GL_DIFFUSE); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Enable rescaling/normaling of normal vectors. // Fixes lighting issues with scaled models. if (gl12) { glEnable(GL12.GL_RESCALE_NORMAL); } else { glEnable(GL_NORMALIZE); } if (GLContext.getCapabilities().GL_ARB_texture_non_power_of_two) { caps.add(Caps.NonPowerOfTwoTextures); } else { logger.log( Level.WARNING, "Your graphics card does not " + "support non-power-of-2 textures. " + "Some features might not work."); } maxLights = glGetInteger(GL_MAX_LIGHTS); maxTexSize = glGetInteger(GL_MAX_TEXTURE_SIZE); } public void invalidateState() { context.reset(); } public void resetGLObjects() { logger.log(Level.FINE, "Reseting objects and invalidating state"); objManager.resetObjects(); statistics.clearMemory(); invalidateState(); } public void cleanup() { logger.log(Level.FINE, "Deleting objects and invalidating state"); objManager.deleteAllObjects(this); statistics.clearMemory(); invalidateState(); } public void setDepthRange(float start, float end) { glDepthRange(start, end); } public void clearBuffers(boolean color, boolean depth, boolean stencil) { int bits = 0; if (color) { // See explanations of the depth below, we must enable color write to be able to clear the // color buffer if (context.colorWriteEnabled == false) { glColorMask(true, true, true, true); context.colorWriteEnabled = true; } bits = GL_COLOR_BUFFER_BIT; } if (depth) { // glClear(GL_DEPTH_BUFFER_BIT) seems to not work when glDepthMask is false // here s some link on openl board // http://www.opengl.org/discussion_boards/ubbthreads.php?ubb=showflat&Number=257223 // if depth clear is requested, we enable the depthMask if (context.depthWriteEnabled == false) { glDepthMask(true); context.depthWriteEnabled = true; } bits |= GL_DEPTH_BUFFER_BIT; } if (stencil) { bits |= GL_STENCIL_BUFFER_BIT; } if (bits != 0) { glClear(bits); } } public void setBackgroundColor(ColorRGBA color) { glClearColor(color.r, color.g, color.b, color.a); } private void setMaterialColor(int type, ColorRGBA color, ColorRGBA defaultColor) { if (color != null) { fb16.put(color.r).put(color.g).put(color.b).put(color.a).flip(); } else { fb16.put(defaultColor.r).put(defaultColor.g).put(defaultColor.b).put(defaultColor.a).flip(); } glMaterial(GL_FRONT_AND_BACK, type, fb16); } /** Applies fixed function bindings from the context to OpenGL */ private void applyFixedFuncBindings(boolean forLighting) { if (forLighting) { glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, context.shininess); setMaterialColor(GL_AMBIENT, context.ambient, ColorRGBA.DarkGray); setMaterialColor(GL_DIFFUSE, context.diffuse, ColorRGBA.White); setMaterialColor(GL_SPECULAR, context.specular, ColorRGBA.Black); if (context.useVertexColor) { glEnable(GL_COLOR_MATERIAL); } else { glDisable(GL_COLOR_MATERIAL); } } else { // Ignore other values as they have no effect when // GL_LIGHTING is disabled. ColorRGBA color = context.color; if (color != null) { glColor4f(color.r, color.g, color.b, color.a); } else { glColor4f(1, 1, 1, 1); } } if (context.alphaTestFallOff > 0f) { glEnable(GL_ALPHA_TEST); glAlphaFunc(GL_GREATER, context.alphaTestFallOff); } else { glDisable(GL_ALPHA_TEST); } } /** Reset fixed function bindings to default values. */ private void resetFixedFuncBindings() { context.alphaTestFallOff = 0f; // zero means disable alpha test! context.color = null; context.ambient = null; context.diffuse = null; context.specular = null; context.shininess = 0; context.useVertexColor = false; } public void setFixedFuncBinding(FixedFuncBinding ffBinding, Object val) { switch (ffBinding) { case Color: context.color = (ColorRGBA) val; break; case MaterialAmbient: context.ambient = (ColorRGBA) val; break; case MaterialDiffuse: context.diffuse = (ColorRGBA) val; break; case MaterialSpecular: context.specular = (ColorRGBA) val; break; case MaterialShininess: context.shininess = (Float) val; break; case UseVertexColor: context.useVertexColor = (Boolean) val; break; case AlphaTestFallOff: context.alphaTestFallOff = (Float) val; break; } } public void applyRenderState(RenderState state) { if (state.isWireframe() && !context.wireframe) { glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); context.wireframe = true; } else if (!state.isWireframe() && context.wireframe) { glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); context.wireframe = false; } if (state.isDepthTest() && !context.depthTestEnabled) { glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LEQUAL); context.depthTestEnabled = true; } else if (!state.isDepthTest() && context.depthTestEnabled) { glDisable(GL_DEPTH_TEST); context.depthTestEnabled = false; } if (state.isAlphaTest()) { setFixedFuncBinding(FixedFuncBinding.AlphaTestFallOff, state.getAlphaFallOff()); } else { setFixedFuncBinding(FixedFuncBinding.AlphaTestFallOff, 0f); // disable it } if (state.isDepthWrite() && !context.depthWriteEnabled) { glDepthMask(true); context.depthWriteEnabled = true; } else if (!state.isDepthWrite() && context.depthWriteEnabled) { glDepthMask(false); context.depthWriteEnabled = false; } if (state.isColorWrite() && !context.colorWriteEnabled) { glColorMask(true, true, true, true); context.colorWriteEnabled = true; } else if (!state.isColorWrite() && context.colorWriteEnabled) { glColorMask(false, false, false, false); context.colorWriteEnabled = false; } if (state.isPointSprite()) { logger.log(Level.WARNING, "Point Sprite unsupported!"); } if (state.isPolyOffset()) { if (!context.polyOffsetEnabled) { glEnable(GL_POLYGON_OFFSET_FILL); glPolygonOffset(state.getPolyOffsetFactor(), state.getPolyOffsetUnits()); context.polyOffsetEnabled = true; context.polyOffsetFactor = state.getPolyOffsetFactor(); context.polyOffsetUnits = state.getPolyOffsetUnits(); } else { if (state.getPolyOffsetFactor() != context.polyOffsetFactor || state.getPolyOffsetUnits() != context.polyOffsetUnits) { glPolygonOffset(state.getPolyOffsetFactor(), state.getPolyOffsetUnits()); context.polyOffsetFactor = state.getPolyOffsetFactor(); context.polyOffsetUnits = state.getPolyOffsetUnits(); } } } else { if (context.polyOffsetEnabled) { glDisable(GL_POLYGON_OFFSET_FILL); context.polyOffsetEnabled = false; context.polyOffsetFactor = 0; context.polyOffsetUnits = 0; } } if (state.getFaceCullMode() != context.cullMode) { if (state.getFaceCullMode() == RenderState.FaceCullMode.Off) { glDisable(GL_CULL_FACE); } else { glEnable(GL_CULL_FACE); } switch (state.getFaceCullMode()) { case Off: break; case Back: glCullFace(GL_BACK); break; case Front: glCullFace(GL_FRONT); break; case FrontAndBack: glCullFace(GL_FRONT_AND_BACK); break; default: throw new UnsupportedOperationException( "Unrecognized face cull mode: " + state.getFaceCullMode()); } context.cullMode = state.getFaceCullMode(); } if (state.getBlendMode() != context.blendMode) { if (state.getBlendMode() == RenderState.BlendMode.Off) { glDisable(GL_BLEND); } else { glEnable(GL_BLEND); switch (state.getBlendMode()) { case Off: break; case Additive: glBlendFunc(GL_ONE, GL_ONE); break; case AlphaAdditive: glBlendFunc(GL_SRC_ALPHA, GL_ONE); break; case Color: glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_COLOR); break; case Alpha: glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); break; case PremultAlpha: glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA); break; case Modulate: glBlendFunc(GL_DST_COLOR, GL_ZERO); break; case ModulateX2: glBlendFunc(GL_DST_COLOR, GL_SRC_COLOR); break; default: throw new UnsupportedOperationException( "Unrecognized blend mode: " + state.getBlendMode()); } } context.blendMode = state.getBlendMode(); } if (state.isStencilTest()) { throw new UnsupportedOperationException( "OpenGL 1.1 doesn't support two sided stencil operations."); } } public void setViewPort(int x, int y, int w, int h) { if (x != vpX || vpY != y || vpW != w || vpH != h) { glViewport(x, y, w, h); vpX = x; vpY = y; vpW = w; vpH = h; } } public void setClipRect(int x, int y, int width, int height) { if (!context.clipRectEnabled) { glEnable(GL_SCISSOR_TEST); context.clipRectEnabled = true; } if (clipX != x || clipY != y || clipW != width || clipH != height) { glScissor(x, y, width, height); clipX = x; clipY = y; clipW = width; clipH = height; } } public void clearClipRect() { if (context.clipRectEnabled) { glDisable(GL_SCISSOR_TEST); context.clipRectEnabled = false; clipX = 0; clipY = 0; clipW = 0; clipH = 0; } } public void onFrame() { objManager.deleteUnused(this); // statistics.clearFrame(); } private FloatBuffer storeMatrix(Matrix4f matrix, FloatBuffer store) { store.clear(); matrix.fillFloatBuffer(store, true); store.clear(); return store; } private void setModelView(Matrix4f modelMatrix, Matrix4f viewMatrix) { if (context.matrixMode != GL_MODELVIEW) { glMatrixMode(GL_MODELVIEW); context.matrixMode = GL_MODELVIEW; } glLoadMatrix(storeMatrix(viewMatrix, fb16)); glMultMatrix(storeMatrix(modelMatrix, fb16)); } private void setProjection(Matrix4f projMatrix) { if (context.matrixMode != GL_PROJECTION) { glMatrixMode(GL_PROJECTION); context.matrixMode = GL_PROJECTION; } glLoadMatrix(storeMatrix(projMatrix, fb16)); } public void setWorldMatrix(Matrix4f worldMatrix) { this.worldMatrix.set(worldMatrix); } public void setViewProjectionMatrices(Matrix4f viewMatrix, Matrix4f projMatrix) { this.viewMatrix.set(viewMatrix); setProjection(projMatrix); } public void setLighting(LightList list) { // XXX: This is abuse of setLighting() to // apply fixed function bindings // and do other book keeping. if (list == null || list.size() == 0) { glDisable(GL_LIGHTING); applyFixedFuncBindings(false); setModelView(worldMatrix, viewMatrix); return; } // Number of lights set previously int numLightsSetPrev = lightList.size(); // If more than maxLights are defined, they will be ignored. // The GL1 renderer is not permitted to crash due to a // GL1 limitation. It must render anything that the GL2 renderer // can render (even incorrectly). lightList.clear(); materialAmbientColor.set(0, 0, 0, 0); for (int i = 0; i < list.size(); i++) { Light l = list.get(i); if (l.getType() == Light.Type.Ambient) { // Gather materialAmbientColor.addLocal(l.getColor()); } else { // Add to list lightList.add(l); // Once maximum lights reached, exit loop. if (lightList.size() >= maxLights) { break; } } } applyFixedFuncBindings(true); glEnable(GL_LIGHTING); fb16.clear(); fb16.put(materialAmbientColor.r) .put(materialAmbientColor.g) .put(materialAmbientColor.b) .put(1) .flip(); glLightModel(GL_LIGHT_MODEL_AMBIENT, fb16); if (context.matrixMode != GL_MODELVIEW) { glMatrixMode(GL_MODELVIEW); context.matrixMode = GL_MODELVIEW; } // Lights are already in world space, so just convert // them to view space. glLoadMatrix(storeMatrix(viewMatrix, fb16)); for (int i = 0; i < lightList.size(); i++) { int glLightIndex = GL_LIGHT0 + i; Light light = lightList.get(i); Light.Type lightType = light.getType(); ColorRGBA col = light.getColor(); Vector3f pos; // Enable the light glEnable(glLightIndex); // OGL spec states default value for light ambient is black switch (lightType) { case Directional: DirectionalLight dLight = (DirectionalLight) light; fb16.clear(); fb16.put(col.r).put(col.g).put(col.b).put(col.a).flip(); glLight(glLightIndex, GL_DIFFUSE, fb16); glLight(glLightIndex, GL_SPECULAR, fb16); pos = tempVec.set(dLight.getDirection()).negateLocal().normalizeLocal(); fb16.clear(); fb16.put(pos.x).put(pos.y).put(pos.z).put(0.0f).flip(); glLight(glLightIndex, GL_POSITION, fb16); glLightf(glLightIndex, GL_SPOT_CUTOFF, 180); break; case Point: PointLight pLight = (PointLight) light; fb16.clear(); fb16.put(col.r).put(col.g).put(col.b).put(col.a).flip(); glLight(glLightIndex, GL_DIFFUSE, fb16); glLight(glLightIndex, GL_SPECULAR, fb16); pos = pLight.getPosition(); fb16.clear(); fb16.put(pos.x).put(pos.y).put(pos.z).put(1.0f).flip(); glLight(glLightIndex, GL_POSITION, fb16); glLightf(glLightIndex, GL_SPOT_CUTOFF, 180); if (pLight.getRadius() > 0) { // Note: this doesn't follow the same attenuation model // as the one used in the lighting shader. glLightf(glLightIndex, GL_CONSTANT_ATTENUATION, 1); glLightf(glLightIndex, GL_LINEAR_ATTENUATION, pLight.getInvRadius() * 2); glLightf( glLightIndex, GL_QUADRATIC_ATTENUATION, pLight.getInvRadius() * pLight.getInvRadius()); } else { glLightf(glLightIndex, GL_CONSTANT_ATTENUATION, 1); glLightf(glLightIndex, GL_LINEAR_ATTENUATION, 0); glLightf(glLightIndex, GL_QUADRATIC_ATTENUATION, 0); } break; case Spot: SpotLight sLight = (SpotLight) light; fb16.clear(); fb16.put(col.r).put(col.g).put(col.b).put(col.a).flip(); glLight(glLightIndex, GL_DIFFUSE, fb16); glLight(glLightIndex, GL_SPECULAR, fb16); pos = sLight.getPosition(); fb16.clear(); fb16.put(pos.x).put(pos.y).put(pos.z).put(1.0f).flip(); glLight(glLightIndex, GL_POSITION, fb16); Vector3f dir = sLight.getDirection(); fb16.clear(); fb16.put(dir.x).put(dir.y).put(dir.z).put(1.0f).flip(); glLight(glLightIndex, GL_SPOT_DIRECTION, fb16); float outerAngleRad = sLight.getSpotOuterAngle(); float innerAngleRad = sLight.getSpotInnerAngle(); float spotCut = outerAngleRad * FastMath.RAD_TO_DEG; float spotExpo = 0.0f; if (outerAngleRad > 0) { spotExpo = (1.0f - (innerAngleRad / outerAngleRad)) * 128.0f; } glLightf(glLightIndex, GL_SPOT_CUTOFF, spotCut); glLightf(glLightIndex, GL_SPOT_EXPONENT, spotExpo); if (sLight.getSpotRange() > 0) { glLightf(glLightIndex, GL_LINEAR_ATTENUATION, sLight.getInvSpotRange()); } else { glLightf(glLightIndex, GL_LINEAR_ATTENUATION, 0); } break; default: throw new UnsupportedOperationException("Unrecognized light type: " + lightType); } } // Disable lights after the index for (int i = lightList.size(); i < numLightsSetPrev; i++) { glDisable(GL_LIGHT0 + i); } // This will set view matrix as well. setModelView(worldMatrix, viewMatrix); } private int convertTextureType(Texture.Type type) { switch (type) { case TwoDimensional: return GL_TEXTURE_2D; // case ThreeDimensional: // return GL_TEXTURE_3D; // case CubeMap: // return GL_TEXTURE_CUBE_MAP; default: throw new UnsupportedOperationException("Unknown texture type: " + type); } } private int convertMagFilter(Texture.MagFilter filter) { switch (filter) { case Bilinear: return GL_LINEAR; case Nearest: return GL_NEAREST; default: throw new UnsupportedOperationException("Unknown mag filter: " + filter); } } private int convertMinFilter(Texture.MinFilter filter) { switch (filter) { case Trilinear: return GL_LINEAR_MIPMAP_LINEAR; case BilinearNearestMipMap: return GL_LINEAR_MIPMAP_NEAREST; case NearestLinearMipMap: return GL_NEAREST_MIPMAP_LINEAR; case NearestNearestMipMap: return GL_NEAREST_MIPMAP_NEAREST; case BilinearNoMipMaps: return GL_LINEAR; case NearestNoMipMaps: return GL_NEAREST; default: throw new UnsupportedOperationException("Unknown min filter: " + filter); } } private int convertWrapMode(Texture.WrapMode mode) { switch (mode) { case EdgeClamp: case Clamp: case BorderClamp: return GL_CLAMP; case Repeat: return GL_REPEAT; default: throw new UnsupportedOperationException("Unknown wrap mode: " + mode); } } private void setupTextureParams(Texture tex) { int target = convertTextureType(tex.getType()); // filter things int minFilter = convertMinFilter(tex.getMinFilter()); int magFilter = convertMagFilter(tex.getMagFilter()); glTexParameteri(target, GL_TEXTURE_MIN_FILTER, minFilter); glTexParameteri(target, GL_TEXTURE_MAG_FILTER, magFilter); // repeat modes switch (tex.getType()) { // case ThreeDimensional: // case CubeMap: // glTexParameteri(target, GL_TEXTURE_WRAP_R, // convertWrapMode(tex.getWrap(WrapAxis.R))); case TwoDimensional: glTexParameteri(target, GL_TEXTURE_WRAP_T, convertWrapMode(tex.getWrap(WrapAxis.T))); // fall down here is intentional.. // case OneDimensional: glTexParameteri(target, GL_TEXTURE_WRAP_S, convertWrapMode(tex.getWrap(WrapAxis.S))); break; default: throw new UnsupportedOperationException("Unknown texture type: " + tex.getType()); } } public void updateTexImageData(Image img, Texture.Type type, int unit) { int texId = img.getId(); if (texId == -1) { // create texture glGenTextures(ib1); texId = ib1.get(0); img.setId(texId); objManager.registerObject(img); statistics.onNewTexture(); } // bind texture int target = convertTextureType(type); // if (context.boundTextureUnit != unit) { // glActiveTexture(GL_TEXTURE0 + unit); // context.boundTextureUnit = unit; // } if (context.boundTextures[unit] != img) { glEnable(target); glBindTexture(target, texId); context.boundTextures[unit] = img; statistics.onTextureUse(img, true); } // Check sizes if graphics card doesn't support NPOT if (!GLContext.getCapabilities().GL_ARB_texture_non_power_of_two) { if (img.getWidth() != 0 && img.getHeight() != 0) { if (!FastMath.isPowerOfTwo(img.getWidth()) || !FastMath.isPowerOfTwo(img.getHeight())) { // Resize texture to Power-of-2 size MipMapGenerator.resizeToPowerOf2(img); } } } if (!img.hasMipmaps() && img.isGeneratedMipmapsRequired()) { // No pregenerated mips available, // generate from base level if required // Check if hardware mips are supported if (GLContext.getCapabilities().OpenGL14) { glTexParameteri(target, GL14.GL_GENERATE_MIPMAP, GL_TRUE); } else { MipMapGenerator.generateMipMaps(img); } img.setMipmapsGenerated(true); } else { } if (img.getWidth() > maxTexSize || img.getHeight() > maxTexSize) { throw new RendererException( "Cannot upload texture " + img + ". The maximum supported texture resolution is " + maxTexSize); } /* if (target == GL_TEXTURE_CUBE_MAP) { List<ByteBuffer> data = img.getData(); if (data.size() != 6) { logger.log(Level.WARNING, "Invalid texture: {0}\n" + "Cubemap textures must contain 6 data units.", img); return; } for (int i = 0; i < 6; i++) { TextureUtil.uploadTexture(img, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, i, 0, tdc); } } else if (target == EXTTextureArray.GL_TEXTURE_2D_ARRAY_EXT) { List<ByteBuffer> data = img.getData(); // -1 index specifies prepare data for 2D Array TextureUtil.uploadTexture(img, target, -1, 0, tdc); for (int i = 0; i < data.size(); i++) { // upload each slice of 2D array in turn // this time with the appropriate index TextureUtil.uploadTexture(img, target, i, 0, tdc); } } else {*/ TextureUtil.uploadTexture(img, target, 0, 0); // } img.clearUpdateNeeded(); } public void setTexture(int unit, Texture tex) { if (unit != 0 || tex.getType() != Texture.Type.TwoDimensional) { // throw new UnsupportedOperationException(); return; } Image image = tex.getImage(); if (image.isUpdateNeeded() || (image.isGeneratedMipmapsRequired() && !image.isMipmapsGenerated())) { updateTexImageData(image, tex.getType(), unit); } int texId = image.getId(); assert texId != -1; Image[] textures = context.boundTextures; int type = convertTextureType(tex.getType()); // if (!context.textureIndexList.moveToNew(unit)) { // if (context.boundTextureUnit != unit){ // glActiveTexture(GL_TEXTURE0 + unit); // context.boundTextureUnit = unit; // } // glEnable(type); // } // if (context.boundTextureUnit != unit) { // glActiveTexture(GL_TEXTURE0 + unit); // context.boundTextureUnit = unit; // } if (textures[unit] != image) { glEnable(type); glBindTexture(type, texId); textures[unit] = image; statistics.onTextureUse(image, true); } else { statistics.onTextureUse(image, false); } setupTextureParams(tex); } public void modifyTexture(Texture tex, Image pixels, int x, int y) { setTexture(0, tex); TextureUtil.uploadSubTexture(pixels, convertTextureType(tex.getType()), 0, x, y); } private void clearTextureUnits() { Image[] textures = context.boundTextures; if (textures[0] != null) { glDisable(GL_TEXTURE_2D); textures[0] = null; } } public void deleteImage(Image image) { int texId = image.getId(); if (texId != -1) { ib1.put(0, texId); ib1.position(0).limit(1); glDeleteTextures(ib1); image.resetObject(); } } private int convertArrayType(VertexBuffer.Type type) { switch (type) { case Position: return GL_VERTEX_ARRAY; case Normal: return GL_NORMAL_ARRAY; case TexCoord: return GL_TEXTURE_COORD_ARRAY; case Color: return GL_COLOR_ARRAY; default: return -1; // unsupported } } private int convertVertexFormat(VertexBuffer.Format fmt) { switch (fmt) { case Byte: return GL_BYTE; case Float: return GL_FLOAT; case Int: return GL_INT; case Short: return GL_SHORT; case UnsignedByte: return GL_UNSIGNED_BYTE; case UnsignedInt: return GL_UNSIGNED_INT; case UnsignedShort: return GL_UNSIGNED_SHORT; default: throw new UnsupportedOperationException("Unrecognized vertex format: " + fmt); } } private int convertElementMode(Mesh.Mode mode) { switch (mode) { case Points: return GL_POINTS; case Lines: return GL_LINES; case LineLoop: return GL_LINE_LOOP; case LineStrip: return GL_LINE_STRIP; case Triangles: return GL_TRIANGLES; case TriangleFan: return GL_TRIANGLE_FAN; case TriangleStrip: return GL_TRIANGLE_STRIP; default: throw new UnsupportedOperationException("Unrecognized mesh mode: " + mode); } } public void drawTriangleArray(Mesh.Mode mode, int count, int vertCount) { if (count > 1) { throw new UnsupportedOperationException(); } glDrawArrays(convertElementMode(mode), 0, vertCount); } public void setVertexAttrib(VertexBuffer vb, VertexBuffer idb) { if (vb.getBufferType() == VertexBuffer.Type.Color && !context.useVertexColor) { // Ignore vertex color buffer if vertex color is disabled. return; } int arrayType = convertArrayType(vb.getBufferType()); if (arrayType == -1) { return; // unsupported } glEnableClientState(arrayType); context.boundAttribs[vb.getBufferType().ordinal()] = vb; if (vb.getBufferType() == Type.Normal) { // normalize if requested if (vb.isNormalized() && !context.normalizeEnabled) { glEnable(GL_NORMALIZE); context.normalizeEnabled = true; } else if (!vb.isNormalized() && context.normalizeEnabled) { glDisable(GL_NORMALIZE); context.normalizeEnabled = false; } } // NOTE: Use data from interleaved buffer if specified Buffer data = idb != null ? idb.getData() : vb.getData(); int comps = vb.getNumComponents(); int type = convertVertexFormat(vb.getFormat()); data.rewind(); switch (vb.getBufferType()) { case Position: if (!(data instanceof FloatBuffer)) { throw new UnsupportedOperationException(); } glVertexPointer(comps, vb.getStride(), (FloatBuffer) data); break; case Normal: if (!(data instanceof FloatBuffer)) { throw new UnsupportedOperationException(); } glNormalPointer(vb.getStride(), (FloatBuffer) data); break; case Color: if (data instanceof FloatBuffer) { glColorPointer(comps, vb.getStride(), (FloatBuffer) data); } else if (data instanceof ByteBuffer) { glColorPointer(comps, true, vb.getStride(), (ByteBuffer) data); } else { throw new UnsupportedOperationException(); } break; case TexCoord: if (!(data instanceof FloatBuffer)) { throw new UnsupportedOperationException(); } glTexCoordPointer(comps, vb.getStride(), (FloatBuffer) data); break; default: // Ignore, this is an unsupported attribute for OpenGL1. break; } } public void setVertexAttrib(VertexBuffer vb) { setVertexAttrib(vb, null); } private void drawElements(int mode, int format, Buffer data) { switch (format) { case GL_UNSIGNED_BYTE: glDrawElements(mode, (ByteBuffer) data); break; case GL_UNSIGNED_SHORT: glDrawElements(mode, (ShortBuffer) data); break; case GL_UNSIGNED_INT: glDrawElements(mode, (IntBuffer) data); break; default: throw new UnsupportedOperationException(); } } public void drawTriangleList(VertexBuffer indexBuf, Mesh mesh, int count) { Mesh.Mode mode = mesh.getMode(); Buffer indexData = indexBuf.getData(); indexData.rewind(); if (mesh.getMode() == Mode.Hybrid) { throw new UnsupportedOperationException(); /* int[] modeStart = mesh.getModeStart(); int[] elementLengths = mesh.getElementLengths(); int elMode = convertElementMode(Mode.Triangles); int fmt = convertVertexFormat(indexBuf.getFormat()); // int elSize = indexBuf.getFormat().getComponentSize(); // int listStart = modeStart[0]; int stripStart = modeStart[1]; int fanStart = modeStart[2]; int curOffset = 0; for (int i = 0; i < elementLengths.length; i++) { if (i == stripStart) { elMode = convertElementMode(Mode.TriangleStrip); } else if (i == fanStart) { elMode = convertElementMode(Mode.TriangleStrip); } int elementLength = elementLengths[i]; indexData.position(curOffset); drawElements(elMode, fmt, indexData); curOffset += elementLength; }*/ } else { drawElements(convertElementMode(mode), convertVertexFormat(indexBuf.getFormat()), indexData); } } public void clearVertexAttribs() { for (int i = 0; i < 16; i++) { VertexBuffer vb = context.boundAttribs[i]; if (vb != null) { int arrayType = convertArrayType(vb.getBufferType()); glDisableClientState(arrayType); context.boundAttribs[vb.getBufferType().ordinal()] = null; } } } private void renderMeshDefault(Mesh mesh, int lod, int count) { VertexBuffer indices = null; VertexBuffer interleavedData = mesh.getBuffer(Type.InterleavedData); if (interleavedData != null && interleavedData.isUpdateNeeded()) { updateBufferData(interleavedData); } if (mesh.getNumLodLevels() > 0) { indices = mesh.getLodLevel(lod); } else { indices = mesh.getBuffer(Type.Index); } for (VertexBuffer vb : mesh.getBufferList().getArray()) { if (vb.getBufferType() == Type.InterleavedData || vb.getUsage() == Usage.CpuOnly // ignore cpu-only buffers || vb.getBufferType() == Type.Index) { continue; } if (vb.getStride() == 0) { // not interleaved setVertexAttrib(vb); } else { // interleaved setVertexAttrib(vb, interleavedData); } } if (indices != null) { drawTriangleList(indices, mesh, count); } else { glDrawArrays(convertElementMode(mesh.getMode()), 0, mesh.getVertexCount()); } // TODO: Fix these to use IDList?? clearVertexAttribs(); clearTextureUnits(); resetFixedFuncBindings(); } public void renderMesh(Mesh mesh, int lod, int count) { if (mesh.getVertexCount() == 0) { return; } if (context.pointSize != mesh.getPointSize()) { glPointSize(mesh.getPointSize()); context.pointSize = mesh.getPointSize(); } if (context.lineWidth != mesh.getLineWidth()) { glLineWidth(mesh.getLineWidth()); context.lineWidth = mesh.getLineWidth(); } boolean dynamic = false; if (mesh.getBuffer(Type.InterleavedData) != null) { throw new UnsupportedOperationException("Interleaved meshes are not supported"); } if (mesh.getNumLodLevels() == 0) { for (VertexBuffer vb : mesh.getBufferList().getArray()) { if (vb.getUsage() != VertexBuffer.Usage.Static) { dynamic = true; break; } } } else { dynamic = true; } statistics.onMeshDrawn(mesh, lod); // if (!dynamic) { // dealing with a static object, generate display list // renderMeshDisplayList(mesh); // } else { renderMeshDefault(mesh, lod, count); // } } public void setAlphaToCoverage(boolean value) {} public void setShader(Shader shader) {} public void deleteShader(Shader shader) {} public void deleteShaderSource(ShaderSource source) {} public void copyFrameBuffer(FrameBuffer src, FrameBuffer dst) {} public void copyFrameBuffer(FrameBuffer src, FrameBuffer dst, boolean copyDepth) {} public void setMainFrameBufferOverride(FrameBuffer fb) {} public void setFrameBuffer(FrameBuffer fb) {} public void readFrameBuffer(FrameBuffer fb, ByteBuffer byteBuf) {} public void deleteFrameBuffer(FrameBuffer fb) {} public void updateBufferData(VertexBuffer vb) {} public void deleteBuffer(VertexBuffer vb) {} }
/** * This method returns an array of size 2. The first element is a vertex buffer holding bone * weights for every vertex in the model. The second element is a vertex buffer holding bone * indices for vertices (the indices of bones the vertices are assigned to). * * @param meshStructure the mesh structure object * @param vertexListSize a number of vertices in the model * @param bonesGroups this is an output parameter, it should be a one-sized array; the maximum * amount of weights per vertex (up to MAXIMUM_WEIGHTS_PER_VERTEX) is stored there * @param vertexReferenceMap this reference map allows to map the original vertices read from * blender to vertices that are really in the model; one vertex may appear several times in * the result model * @param groupToBoneIndexMap this object maps the group index (to which a vertices in blender * belong) to bone index of the model * @param blenderContext the blender context * @return arrays of vertices weights and their bone indices and (as an output parameter) the * maximum amount of weights for a vertex * @throws BlenderFileException this exception is thrown when the blend file structure is somehow * invalid or corrupted */ private VertexBuffer[] getBoneWeightAndIndexBuffer( Structure meshStructure, int vertexListSize, int[] bonesGroups, Map<Integer, List<Integer>> vertexReferenceMap, Map<Integer, Integer> groupToBoneIndexMap, BlenderContext blenderContext) throws BlenderFileException { Pointer pDvert = (Pointer) meshStructure.getFieldValue("dvert"); // dvert = DeformVERTices FloatBuffer weightsFloatData = BufferUtils.createFloatBuffer(vertexListSize * MAXIMUM_WEIGHTS_PER_VERTEX); ByteBuffer indicesData = BufferUtils.createByteBuffer(vertexListSize * MAXIMUM_WEIGHTS_PER_VERTEX); if (pDvert.isNotNull()) { // assigning weights and bone indices List<Structure> dverts = pDvert.fetchData( blenderContext.getInputStream()); // dverts.size() == verticesAmount (one dvert per // vertex in blender) int vertexIndex = 0; for (Structure dvert : dverts) { int totweight = ((Number) dvert.getFieldValue("totweight")) .intValue(); // total amount of weights assignet to the vertex // (max. 4 in JME) Pointer pDW = (Pointer) dvert.getFieldValue("dw"); List<Integer> vertexIndices = vertexReferenceMap.get( Integer.valueOf(vertexIndex)); // we fetch the referenced vertices here if (totweight > 0 && pDW.isNotNull() && groupToBoneIndexMap != null) { // pDW should never be null here, but I check it just in case :) int weightIndex = 0; List<Structure> dw = pDW.fetchData(blenderContext.getInputStream()); for (Structure deformWeight : dw) { Integer boneIndex = groupToBoneIndexMap.get(((Number) deformWeight.getFieldValue("def_nr")).intValue()); // Remove this code if 4 weights limitation is removed if (weightIndex == 4) { LOGGER.log( Level.WARNING, "{0} has more than 4 weight on bone index {1}", new Object[] {meshStructure.getName(), boneIndex}); break; } if (boneIndex != null) { // null here means that we came accross group that has no bone attached // to float weight = ((Number) deformWeight.getFieldValue("weight")).floatValue(); if (weight == 0.0f) { weight = 1; boneIndex = Integer.valueOf(0); } // we apply the weight to all referenced vertices for (Integer index : vertexIndices) { weightsFloatData.put(index * MAXIMUM_WEIGHTS_PER_VERTEX + weightIndex, weight); indicesData.put( index * MAXIMUM_WEIGHTS_PER_VERTEX + weightIndex, boneIndex.byteValue()); } } ++weightIndex; } } else { for (Integer index : vertexIndices) { weightsFloatData.put(index * MAXIMUM_WEIGHTS_PER_VERTEX, 1.0f); indicesData.put(index * MAXIMUM_WEIGHTS_PER_VERTEX, (byte) 0); } } ++vertexIndex; } } else { // always bind all vertices to 0-indexed bone // this bone makes the model look normally if vertices have no bone assigned // and it is used in object animation, so if we come accross object animation // we can use the 0-indexed bone for this for (List<Integer> vertexIndexList : vertexReferenceMap.values()) { // we apply the weight to all referenced vertices for (Integer index : vertexIndexList) { weightsFloatData.put(index * MAXIMUM_WEIGHTS_PER_VERTEX, 1.0f); indicesData.put(index * MAXIMUM_WEIGHTS_PER_VERTEX, (byte) 0); } } } bonesGroups[0] = this.endBoneAssigns(vertexListSize, weightsFloatData); VertexBuffer verticesWeights = new VertexBuffer(Type.BoneWeight); verticesWeights.setupData(Usage.CpuOnly, bonesGroups[0], Format.Float, weightsFloatData); VertexBuffer verticesWeightsIndices = new VertexBuffer(Type.BoneIndex); verticesWeightsIndices.setupData( Usage.CpuOnly, bonesGroups[0], Format.UnsignedByte, indicesData); return new VertexBuffer[] {verticesWeights, verticesWeightsIndices}; }
/** * This test renders a scene to an offscreen framebuffer, then copies the contents to a Swing * JFrame. Note that some parts are done inefficently, this is done to make the code more readable. */ public class TestRenderToMemory extends SimpleApplication implements SceneProcessor { private Geometry offBox; private float angle = 0; private FrameBuffer offBuffer; private ViewPort offView; private Texture2D offTex; private Camera offCamera; private ImageDisplay display; private static final int width = 800, height = 600; private final ByteBuffer cpuBuf = BufferUtils.createByteBuffer(width * height * 4); private final byte[] cpuArray = new byte[width * height * 4]; private final BufferedImage image = new BufferedImage(width, height, BufferedImage.TYPE_4BYTE_ABGR); private class ImageDisplay extends JPanel { private long t; private long total; private int frames; private int fps; @Override public void paintComponent(Graphics gfx) { super.paintComponent(gfx); Graphics2D g2d = (Graphics2D) gfx; if (t == 0) t = timer.getTime(); // g2d.setBackground(Color.BLACK); // g2d.clearRect(0,0,width,height); synchronized (image) { g2d.drawImage(image, null, 0, 0); } long t2 = timer.getTime(); long dt = t2 - t; total += dt; frames++; t = t2; if (total > 1000) { fps = frames; total = 0; frames = 0; } g2d.setColor(Color.white); g2d.drawString("FPS: " + fps, 0, getHeight() - 100); } } public static void main(String[] args) { TestRenderToMemory app = new TestRenderToMemory(); app.setPauseOnLostFocus(false); AppSettings settings = new AppSettings(true); settings.setResolution(1, 1); app.setSettings(settings); app.start(Type.OffscreenSurface); } public void createDisplayFrame() { SwingUtilities.invokeLater( new Runnable() { public void run() { JFrame frame = new JFrame("Render Display"); display = new ImageDisplay(); display.setPreferredSize(new Dimension(width, height)); frame.getContentPane().add(display); frame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE); frame.addWindowListener( new WindowAdapter() { public void windowClosed(WindowEvent e) { stop(); } }); frame.pack(); frame.setLocationRelativeTo(null); frame.setResizable(false); frame.setVisible(true); } }); } public void updateImageContents() { cpuBuf.clear(); renderer.readFrameBuffer(offBuffer, cpuBuf); synchronized (image) { Screenshots.convertScreenShot(cpuBuf, image); } if (display != null) display.repaint(); } public void setupOffscreenView() { offCamera = new Camera(width, height); // create a pre-view. a view that is rendered before the main view offView = renderManager.createPreView("Offscreen View", offCamera); offView.setBackgroundColor(ColorRGBA.DarkGray); offView.setClearFlags(true, true, true); // this will let us know when the scene has been rendered to the // frame buffer offView.addProcessor(this); // create offscreen framebuffer offBuffer = new FrameBuffer(width, height, 1); // setup framebuffer's cam offCamera.setFrustumPerspective(45f, 1f, 1f, 1000f); offCamera.setLocation(new Vector3f(0f, 0f, -5f)); offCamera.lookAt(new Vector3f(0f, 0f, 0f), Vector3f.UNIT_Y); // setup framebuffer's texture // offTex = new Texture2D(width, height, Format.RGBA8); // setup framebuffer to use renderbuffer // this is faster for gpu -> cpu copies offBuffer.setDepthBuffer(Format.Depth); offBuffer.setColorBuffer(Format.RGBA8); // offBuffer.setColorTexture(offTex); // set viewport to render to offscreen framebuffer offView.setOutputFrameBuffer(offBuffer); // setup framebuffer's scene Box boxMesh = new Box(Vector3f.ZERO, 1, 1, 1); Material material = assetManager.loadMaterial("Interface/Logo/Logo.j3m"); offBox = new Geometry("box", boxMesh); offBox.setMaterial(material); // attach the scene to the viewport to be rendered offView.attachScene(offBox); } @Override public void simpleInitApp() { setupOffscreenView(); createDisplayFrame(); } @Override public void simpleUpdate(float tpf) { Quaternion q = new Quaternion(); angle += tpf; angle %= FastMath.TWO_PI; q.fromAngles(angle, 0, angle); offBox.setLocalRotation(q); offBox.updateLogicalState(tpf); offBox.updateGeometricState(); } public void initialize(RenderManager rm, ViewPort vp) {} public void reshape(ViewPort vp, int w, int h) {} public boolean isInitialized() { return true; } public void preFrame(float tpf) {} public void postQueue(RenderQueue rq) {} /** Update the CPU image's contents after the scene has been rendered to the framebuffer. */ public void postFrame(FrameBuffer out) { updateImageContents(); } public void cleanup() {} }
/** * <code>loadImage</code> is a manual image loader which is entirely independent of AWT. OUT: * RGB888 or RGBA8888 Image object * * @param in InputStream of an uncompressed 24b RGB or 32b RGBA TGA * @param flip Flip the image vertically * @return <code>Image</code> object that contains the image, either as a RGB888 or RGBA8888 * @throws java.io.IOException */ public static Image load(InputStream in, boolean flip) throws IOException { boolean flipH = false; // open a stream to the file DataInputStream dis = new DataInputStream(new BufferedInputStream(in)); // ---------- Start Reading the TGA header ---------- // // length of the image id (1 byte) int idLength = dis.readUnsignedByte(); // Type of color map (if any) included with the image // 0 - no color map data is included // 1 - a color map is included int colorMapType = dis.readUnsignedByte(); // Type of image being read: int imageType = dis.readUnsignedByte(); // Read Color Map Specification (5 bytes) // Index of first color map entry (if we want to use it, uncomment and remove extra read.) // short cMapStart = flipEndian(dis.readShort()); dis.readShort(); // number of entries in the color map short cMapLength = flipEndian(dis.readShort()); // number of bits per color map entry int cMapDepth = dis.readUnsignedByte(); // Read Image Specification (10 bytes) // horizontal coordinate of lower left corner of image. (if we want to use it, uncomment and // remove extra read.) // int xOffset = flipEndian(dis.readShort()); dis.readShort(); // vertical coordinate of lower left corner of image. (if we want to use it, uncomment and // remove extra read.) // int yOffset = flipEndian(dis.readShort()); dis.readShort(); // width of image - in pixels int width = flipEndian(dis.readShort()); // height of image - in pixels int height = flipEndian(dis.readShort()); // bits per pixel in image. int pixelDepth = dis.readUnsignedByte(); int imageDescriptor = dis.readUnsignedByte(); if ((imageDescriptor & 32) != 0) // bit 5 : if 1, flip top/bottom ordering { flip = !flip; } if ((imageDescriptor & 16) != 0) // bit 4 : if 1, flip left/right ordering { flipH = !flipH; } // ---------- Done Reading the TGA header ---------- // // Skip image ID if (idLength > 0) { dis.skip(idLength); } ColorMapEntry[] cMapEntries = null; if (colorMapType != 0) { // read the color map. int bytesInColorMap = (cMapDepth * cMapLength) >> 3; int bitsPerColor = Math.min(cMapDepth / 3, 8); byte[] cMapData = new byte[bytesInColorMap]; dis.read(cMapData); // Only go to the trouble of constructing the color map // table if this is declared a color mapped image. if (imageType == TYPE_COLORMAPPED || imageType == TYPE_COLORMAPPED_RLE) { cMapEntries = new ColorMapEntry[cMapLength]; int alphaSize = cMapDepth - (3 * bitsPerColor); float scalar = 255f / (FastMath.pow(2, bitsPerColor) - 1); float alphaScalar = 255f / (FastMath.pow(2, alphaSize) - 1); for (int i = 0; i < cMapLength; i++) { ColorMapEntry entry = new ColorMapEntry(); int offset = cMapDepth * i; entry.red = (byte) (int) (getBitsAsByte(cMapData, offset, bitsPerColor) * scalar); entry.green = (byte) (int) (getBitsAsByte(cMapData, offset + bitsPerColor, bitsPerColor) * scalar); entry.blue = (byte) (int) (getBitsAsByte(cMapData, offset + (2 * bitsPerColor), bitsPerColor) * scalar); if (alphaSize <= 0) { entry.alpha = (byte) 255; } else { entry.alpha = (byte) (int) (getBitsAsByte(cMapData, offset + (3 * bitsPerColor), alphaSize) * alphaScalar); } cMapEntries[i] = entry; } } } // Allocate image data array Format format; byte[] rawData = null; int dl; if (pixelDepth == 32) { rawData = new byte[width * height * 4]; dl = 4; } else { rawData = new byte[width * height * 3]; dl = 3; } int rawDataIndex = 0; if (imageType == TYPE_TRUECOLOR) { byte red = 0; byte green = 0; byte blue = 0; byte alpha = 0; // Faster than doing a 16-or-24-or-32 check on each individual pixel, // just make a seperate loop for each. if (pixelDepth == 16) { byte[] data = new byte[2]; float scalar = 255f / 31f; for (int i = 0; i <= (height - 1); i++) { if (!flip) { rawDataIndex = (height - 1 - i) * width * dl; } for (int j = 0; j < width; j++) { data[1] = dis.readByte(); data[0] = dis.readByte(); rawData[rawDataIndex++] = (byte) (int) (getBitsAsByte(data, 1, 5) * scalar); rawData[rawDataIndex++] = (byte) (int) (getBitsAsByte(data, 6, 5) * scalar); rawData[rawDataIndex++] = (byte) (int) (getBitsAsByte(data, 11, 5) * scalar); if (dl == 4) { // create an alpha channel alpha = getBitsAsByte(data, 0, 1); if (alpha == 1) { alpha = (byte) 255; } rawData[rawDataIndex++] = alpha; } } } format = dl == 4 ? Format.RGBA8 : Format.RGB8; } else if (pixelDepth == 24) { for (int y = 0; y < height; y++) { if (!flip) { rawDataIndex = (height - 1 - y) * width * dl; } else { rawDataIndex = y * width * dl; } dis.readFully(rawData, rawDataIndex, width * dl); // for (int x = 0; x < width; x++) { // read scanline // blue = dis.readByte(); // green = dis.readByte(); // red = dis.readByte(); // rawData[rawDataIndex++] = red; // rawData[rawDataIndex++] = green; // rawData[rawDataIndex++] = blue; // } } format = Format.BGR8; } else if (pixelDepth == 32) { for (int i = 0; i <= (height - 1); i++) { if (!flip) { rawDataIndex = (height - 1 - i) * width * dl; } for (int j = 0; j < width; j++) { blue = dis.readByte(); green = dis.readByte(); red = dis.readByte(); alpha = dis.readByte(); rawData[rawDataIndex++] = red; rawData[rawDataIndex++] = green; rawData[rawDataIndex++] = blue; rawData[rawDataIndex++] = alpha; } } format = Format.RGBA8; } else { throw new IOException("Unsupported TGA true color depth: " + pixelDepth); } } else if (imageType == TYPE_TRUECOLOR_RLE) { byte red = 0; byte green = 0; byte blue = 0; byte alpha = 0; // Faster than doing a 16-or-24-or-32 check on each individual pixel, // just make a seperate loop for each. if (pixelDepth == 32) { for (int i = 0; i <= (height - 1); ++i) { if (!flip) { rawDataIndex = (height - 1 - i) * width * dl; } for (int j = 0; j < width; ++j) { // Get the number of pixels the next chunk covers (either packed or unpacked) int count = dis.readByte(); if ((count & 0x80) != 0) { // Its an RLE packed block - use the following 1 pixel for the next <count> pixels count &= 0x07f; j += count; blue = dis.readByte(); green = dis.readByte(); red = dis.readByte(); alpha = dis.readByte(); while (count-- >= 0) { rawData[rawDataIndex++] = red; rawData[rawDataIndex++] = green; rawData[rawDataIndex++] = blue; rawData[rawDataIndex++] = alpha; } } else { // Its not RLE packed, but the next <count> pixels are raw. j += count; while (count-- >= 0) { blue = dis.readByte(); green = dis.readByte(); red = dis.readByte(); alpha = dis.readByte(); rawData[rawDataIndex++] = red; rawData[rawDataIndex++] = green; rawData[rawDataIndex++] = blue; rawData[rawDataIndex++] = alpha; } } } } format = Format.RGBA8; } else if (pixelDepth == 24) { for (int i = 0; i <= (height - 1); i++) { if (!flip) { rawDataIndex = (height - 1 - i) * width * dl; } for (int j = 0; j < width; ++j) { // Get the number of pixels the next chunk covers (either packed or unpacked) int count = dis.readByte(); if ((count & 0x80) != 0) { // Its an RLE packed block - use the following 1 pixel for the next <count> pixels count &= 0x07f; j += count; blue = dis.readByte(); green = dis.readByte(); red = dis.readByte(); while (count-- >= 0) { rawData[rawDataIndex++] = red; rawData[rawDataIndex++] = green; rawData[rawDataIndex++] = blue; } } else { // Its not RLE packed, but the next <count> pixels are raw. j += count; while (count-- >= 0) { blue = dis.readByte(); green = dis.readByte(); red = dis.readByte(); rawData[rawDataIndex++] = red; rawData[rawDataIndex++] = green; rawData[rawDataIndex++] = blue; } } } } format = Format.RGB8; } else if (pixelDepth == 16) { byte[] data = new byte[2]; float scalar = 255f / 31f; for (int i = 0; i <= (height - 1); i++) { if (!flip) { rawDataIndex = (height - 1 - i) * width * dl; } for (int j = 0; j < width; j++) { // Get the number of pixels the next chunk covers (either packed or unpacked) int count = dis.readByte(); if ((count & 0x80) != 0) { // Its an RLE packed block - use the following 1 pixel for the next <count> pixels count &= 0x07f; j += count; data[1] = dis.readByte(); data[0] = dis.readByte(); blue = (byte) (int) (getBitsAsByte(data, 1, 5) * scalar); green = (byte) (int) (getBitsAsByte(data, 6, 5) * scalar); red = (byte) (int) (getBitsAsByte(data, 11, 5) * scalar); while (count-- >= 0) { rawData[rawDataIndex++] = red; rawData[rawDataIndex++] = green; rawData[rawDataIndex++] = blue; } } else { // Its not RLE packed, but the next <count> pixels are raw. j += count; while (count-- >= 0) { data[1] = dis.readByte(); data[0] = dis.readByte(); blue = (byte) (int) (getBitsAsByte(data, 1, 5) * scalar); green = (byte) (int) (getBitsAsByte(data, 6, 5) * scalar); red = (byte) (int) (getBitsAsByte(data, 11, 5) * scalar); rawData[rawDataIndex++] = red; rawData[rawDataIndex++] = green; rawData[rawDataIndex++] = blue; } } } } format = Format.RGB8; } else { throw new IOException("Unsupported TGA true color depth: " + pixelDepth); } } else if (imageType == TYPE_COLORMAPPED) { int bytesPerIndex = pixelDepth / 8; if (bytesPerIndex == 1) { for (int i = 0; i <= (height - 1); i++) { if (!flip) { rawDataIndex = (height - 1 - i) * width * dl; } for (int j = 0; j < width; j++) { int index = dis.readUnsignedByte(); if (index >= cMapEntries.length || index < 0) { throw new IOException("TGA: Invalid color map entry referenced: " + index); } ColorMapEntry entry = cMapEntries[index]; rawData[rawDataIndex++] = entry.blue; rawData[rawDataIndex++] = entry.green; rawData[rawDataIndex++] = entry.red; if (dl == 4) { rawData[rawDataIndex++] = entry.alpha; } } } } else if (bytesPerIndex == 2) { for (int i = 0; i <= (height - 1); i++) { if (!flip) { rawDataIndex = (height - 1 - i) * width * dl; } for (int j = 0; j < width; j++) { int index = flipEndian(dis.readShort()); if (index >= cMapEntries.length || index < 0) { throw new IOException("TGA: Invalid color map entry referenced: " + index); } ColorMapEntry entry = cMapEntries[index]; rawData[rawDataIndex++] = entry.blue; rawData[rawDataIndex++] = entry.green; rawData[rawDataIndex++] = entry.red; if (dl == 4) { rawData[rawDataIndex++] = entry.alpha; } } } } else { throw new IOException("TGA: unknown colormap indexing size used: " + bytesPerIndex); } format = dl == 4 ? Format.RGBA8 : Format.RGB8; } else { throw new IOException("Monochrome and RLE colormapped images are not supported"); } in.close(); // Get a pointer to the image memory ByteBuffer scratch = BufferUtils.createByteBuffer(rawData.length); scratch.clear(); scratch.put(rawData); scratch.rewind(); // Create the Image object Image textureImage = new Image(); textureImage.setFormat(format); textureImage.setWidth(width); textureImage.setHeight(height); textureImage.setData(scratch); return textureImage; }