/** * The ApGenRules as described in p.14 of the paper by Agrawal. (see the Agrawal paper for more * details). * * @param k the size of the first itemset used to generate rules * @param m the recursive depth of the call to this method (first time 1, then 2...) * @param lk the itemset that is used to generate rules * @param Hm a set of itemsets that can be used with lk to generate rules * @throws IOException exception if error while writing output file */ private void apGenrules(int k, int m, Itemset lk, List<int[]> Hm) throws IOException { // if the itemset "lk" that is used to generate rules is larger than the size of itemsets in // "Hm" if (k > m + 1) { // Create a list that we will be used to store itemsets for the recursive call List<int[]> Hm_plus_1_for_recursion = new ArrayList<int[]>(); // generate candidates using Hm List<int[]> Hm_plus_1 = generateCandidateSizeK(Hm); // for each such candidates for (int[] hm_P_1 : Hm_plus_1) { // We subtract the candidate from the itemset "lk" int[] itemset_Lk_minus_hm_P_1 = ArraysAlgos.cloneItemSetMinusAnItemset(lk.getItems(), hm_P_1); // We will now calculate the support of the rule Lk/(hm_P_1) ==> hm_P_1 // we need it to calculate the confidence int support = calculateSupport(itemset_Lk_minus_hm_P_1); double supportAsDouble = (double) support; // calculate the confidence of the rule Lk/(hm_P_1) ==> hm_P_1 double conf = lk.getAbsoluteSupport() / supportAsDouble; // if the confidence is not enough than we don't need to consider // the rule Lk/(hm_P_1) ==> hm_P_1 anymore so we continue if (conf < minconf || Double.isInfinite(conf)) { continue; } double lift = 0; int supportHm_P_1 = 0; // if the user is using the minlift threshold, then we will need to calculate the lift of // the // rule as well and check if the lift is higher or equal to minlift. if (usingLift) { // if we want to calculate the lift, we need the support of Hm+1 supportHm_P_1 = calculateSupport(hm_P_1); // calculate the lift of the rule: Lk/(hm_P_1) ==> hm_P_1 double term1 = ((double) lk.getAbsoluteSupport()) / databaseSize; double term2 = (supportAsDouble) / databaseSize; lift = term1 / (term2 * ((double) supportHm_P_1 / databaseSize)); // if the lift is not enough if (lift < minlift) { continue; } } // The rule has passed the confidence and lift threshold requirements, // so we can output it saveRule( itemset_Lk_minus_hm_P_1, support, hm_P_1, supportHm_P_1, lk.getAbsoluteSupport(), conf, lift); // if k == m+1, then we cannot explore further rules using Lk since Lk will be too small. if (k != m + 1) { Hm_plus_1_for_recursion.add(hm_P_1); } } // recursive call to apGenRules to find more rules using "lk" apGenrules(k, m + 1, lk, Hm_plus_1_for_recursion); } }
/** * Calculate the support of an itemset by looking at the frequent patterns of the same size. * Because patterns are sorted by lexical order, we use a binary search. This is MUCH MORE * efficient than just browsing the full list of patterns. An alternative would be to use a trie * to store patterns but it may require a bit more memory. * * @param itemset the itemset. * @return the support of the itemset */ private int calculateSupport(int[] itemset) { // We first get the list of patterns having the same size as "itemset" List<Itemset> patternsSameSize = patterns.getLevels().get(itemset.length); // // We perform a binary search to find the position of itemset in this list int first = 0; int last = patternsSameSize.size() - 1; while (first <= last) { int middle = (first + last) >> 1; // >>1 means to divide by 2 int[] itemsetMiddle = patternsSameSize.get(middle).getItems(); int comparison = ArraysAlgos.comparatorItemsetSameSize.compare(itemset, itemsetMiddle); if (comparison > 0) { first = middle + 1; // the itemset compared is larger than the subset according to the lexical // order } else if (comparison < 0) { last = middle - 1; // the itemset compared is smaller than the subset is smaller according to // the lexical order } else { // we have found the itemset, so we return its support. return patternsSameSize.get(middle).getAbsoluteSupport(); } } // If the itemset is not found in this list, it means that the itemset // is not closed, so we need to find the smallest superset (its closure) to // determine its support. // We start from itemset of length |itemset|+1 and increase the size of itemset after each // while loop. int size = itemset.length; loop: while (true) { size++; List<Itemset> patternsList = patterns.getLevels().get(size); // For each pattern of a given size for (Itemset pattern : patternsList) { int[] patternArray = pattern.getItems(); // If the first item of the pattern is larger than the first item of the itemset, // we don't need to compare with following patterns. if (patternArray[0] > itemset[0]) { continue loop; } // Otherwise, we check if itemset is contained in pattern int posItemset = 0; int posPattern = 0; while (posPattern < patternArray.length) { if (patternArray[posPattern] == itemset[posItemset]) { posItemset++; // if it is contained completely if (posItemset == itemset.length) { return pattern.getAbsoluteSupport(); } } else if (patternArray[posPattern] >= itemset[posItemset]) { // if the current item of pattern is larger than the current item in pattern, // then itemset cannot be contained in pattern so we stop considering it break; } posPattern++; } } } }
/** * Run the algorithm for generating association rules from a set of itemsets. * * @param patterns the set of itemsets * @param output the output file path. If null the result is saved in memory and returned by the * method. * @param databaseSize the number of transactions in the original database * @return the set of rules found if the user chose to save the result to memory * @throws IOException exception if error while writting to file */ private AssocRules runAlgorithm(Itemsets patterns, String output, int databaseSize) throws IOException { // if the user want to keep the result into memory if (output == null) { writer = null; rules = new AssocRules("ASSOCIATION RULES"); } else { // if the user want to save the result to a file rules = null; writer = new BufferedWriter(new FileWriter(output)); } this.databaseSize = databaseSize; // record the time when the algorithm starts startTimestamp = System.currentTimeMillis(); // initialize variable to count the number of rules found ruleCount = 0; // save itemsets in a member variable this.patterns = patterns; // SORTING // First, we sort all itemsets having the same size by lexical order // We do this for optimization purposes. If the itemsets are sorted, it allows to // perform two optimizations: // 1) When we need to calculate the support of an itemset (in the method // "calculateSupport()") we can use a binary search instead of browsing the whole list. // 2) When combining itemsets to generate candidate, we can use the // lexical order to avoid comparisons (in the method "generateCandidates()"). // For itemsets of the same size for (List<Itemset> itemsetsSameSize : patterns.getLevels()) { // Sort by lexicographical order using a Comparator Collections.sort( itemsetsSameSize, new Comparator<Itemset>() { @Override public int compare(Itemset o1, Itemset o2) { // The following code assume that itemsets are the same size return ArraysAlgos.comparatorItemsetSameSize.compare(o1.getItems(), o2.getItems()); } }); } // END OF SORTING // Now we will generate the rules. // For each frequent itemset of size >=2 that we will name "lk" for (int k = 2; k < patterns.getLevels().size(); k++) { for (Itemset lk : patterns.getLevels().get(k)) { // create a variable H1 for recursion List<int[]> H1_for_recursion = new ArrayList<int[]>(); // For each itemset "itemsetSize1" of size 1 that is member of lk for (int item : lk.getItems()) { int itemsetHm_P_1[] = new int[] {item}; // make a copy of lk without items from hm_P_1 int[] itemset_Lk_minus_hm_P_1 = ArraysAlgos.cloneItemSetMinusOneItem(lk.getItems(), item); // Now we will calculate the support and confidence // of the rule: itemset_Lk_minus_hm_P_1 ==> hm_P_1 int support = calculateSupport(itemset_Lk_minus_hm_P_1); // THIS COULD BE // OPTIMIZED ? double supportAsDouble = (double) support; // calculate the confidence of the rule : itemset_Lk_minus_hm_P_1 ==> hm_P_1 double conf = lk.getAbsoluteSupport() / supportAsDouble; // if the confidence is lower than minconf if (conf < minconf || Double.isInfinite(conf)) { continue; } double lift = 0; int supportHm_P_1 = 0; // if the user is using the minlift threshold, we will need // to also calculate the lift of the rule: itemset_Lk_minus_hm_P_1 ==> hm_P_1 if (usingLift) { // if we want to calculate the lift, we need the support of hm_P_1 supportHm_P_1 = calculateSupport( itemsetHm_P_1); // if we want to calculate the lift, we need to add this. // calculate the lift double term1 = ((double) lk.getAbsoluteSupport()) / databaseSize; double term2 = supportAsDouble / databaseSize; double term3 = ((double) supportHm_P_1 / databaseSize); lift = term1 / (term2 * term3); // if the lift is not enough if (lift < minlift) { continue; } } // If we are here, it means that the rule respect the minconf and minlift parameters. // Therefore, we output the rule. saveRule( itemset_Lk_minus_hm_P_1, support, itemsetHm_P_1, supportHm_P_1, lk.getAbsoluteSupport(), conf, lift); // Then we keep the itemset hm_P_1 to find more rules using this itemset and lk. H1_for_recursion.add(itemsetHm_P_1); // ================ END OF WHAT I HAVE ADDED } // Finally, we make a recursive call to continue explores rules that can be made with "lk" apGenrules(k, 1, lk, H1_for_recursion); } } // close the file if we saved the result to a file if (writer != null) { writer.close(); } // record the end time of the algorithm execution endTimeStamp = System.currentTimeMillis(); // Return the rules found if the user chose to save the result to memory rather than a file. // Otherwise, null will be returned return rules; }