/**
  * Computes the present value of the Physical delivery swaption through approximation..
  *
  * @param swaption The swaption.
  * @param cfe The swaption cash flow equiovalent.
  * @param g2Data The G2++ parameters and the curves.
  * @return The present value.
  */
 public CurrencyAmount presentValue(
     final SwaptionPhysicalFixedIbor swaption,
     final AnnuityPaymentFixed cfe,
     final G2ppPiecewiseConstantDataBundle g2Data) {
   YieldAndDiscountCurve dsc =
       g2Data.getCurve(swaption.getUnderlyingSwap().getFixedLeg().getDiscountCurve());
   int nbCf = cfe.getNumberOfPayments();
   double[] cfa = new double[nbCf];
   double[] t = new double[nbCf];
   for (int loopcf = 0; loopcf < nbCf; loopcf++) {
     cfa[loopcf] =
         -Math.signum(cfe.getNthPayment(0).getAmount()) * cfe.getNthPayment(loopcf).getAmount();
     t[loopcf] = cfe.getNthPayment(loopcf).getPaymentTime();
   }
   double rhog2pp = g2Data.getG2ppParameter().getCorrelation();
   double[][] ht0 = MODEL_G2PP.volatilityMaturityPart(g2Data.getG2ppParameter(), t[0], t);
   double[] dfswap = new double[nbCf];
   double[] p0 = new double[nbCf];
   double[] cP = new double[nbCf];
   for (int loopcf = 0; loopcf < nbCf; loopcf++) {
     dfswap[loopcf] = dsc.getDiscountFactor(t[loopcf]);
     p0[loopcf] = dfswap[loopcf] / dfswap[0];
     cP[loopcf] = cfa[loopcf] * p0[loopcf];
   }
   double k = -cfa[0];
   double b0 = 0.0;
   for (int loopcf = 1; loopcf < nbCf; loopcf++) {
     b0 += cP[loopcf];
   }
   double[] alpha0 = new double[nbCf - 1];
   double[] beta0 = new double[2];
   for (int loopcf = 0; loopcf < nbCf - 1; loopcf++) {
     alpha0[loopcf] = cfa[loopcf + 1] * p0[loopcf + 1] / b0;
     beta0[0] += alpha0[loopcf] * ht0[0][loopcf + 1];
     beta0[1] += alpha0[loopcf] * ht0[1][loopcf + 1];
   }
   double[][] gamma = MODEL_G2PP.gamma(g2Data.getG2ppParameter(), 0, swaption.getTimeToExpiry());
   double[] tau = new double[nbCf];
   for (int loopcf = 0; loopcf < nbCf; loopcf++) {
     tau[loopcf] =
         gamma[0][0] * ht0[0][loopcf] * ht0[0][loopcf]
             + gamma[1][1] * ht0[1][loopcf] * ht0[1][loopcf]
             + 2 * rhog2pp * gamma[0][1] * ht0[0][loopcf] * ht0[1][loopcf];
   }
   double xbarnum = 0.0;
   double xbarde = 0.0;
   for (int loopcf = 0; loopcf < nbCf; loopcf++) {
     xbarnum += cP[loopcf] - cP[loopcf] * tau[loopcf] * tau[loopcf] / 2.0;
     xbarde += cP[loopcf] * tau[loopcf];
   }
   double xbar = xbarnum / xbarde;
   double[] pK = new double[nbCf];
   for (int loopcf = 0; loopcf < nbCf; loopcf++) {
     pK[loopcf] = p0[loopcf] * (1.0 - tau[loopcf] * xbar - tau[loopcf] * tau[loopcf] / 2.0);
   }
   double[] alphaK = new double[nbCf - 1];
   double[] betaK = new double[2];
   for (int loopcf = 0; loopcf < nbCf - 1; loopcf++) {
     alphaK[loopcf] = cfa[loopcf + 1] * pK[loopcf + 1] / k;
     betaK[0] += alphaK[loopcf] * ht0[0][loopcf + 1];
     betaK[1] += alphaK[loopcf] * ht0[1][loopcf + 1];
   }
   double[] betaBar = new double[] {(beta0[0] + betaK[0]) / 2.0, (beta0[1] + betaK[1]) / 2.0};
   double sigmaBar2 =
       gamma[0][0] * betaBar[0] * betaBar[0]
           + gamma[1][1] * betaBar[1] * betaBar[1]
           + 2 * rhog2pp * gamma[0][1] * betaBar[0] * betaBar[1];
   double sigmaBar = Math.sqrt(sigmaBar2);
   EuropeanVanillaOption option = new EuropeanVanillaOption(k, 1, !swaption.isCall());
   final BlackPriceFunction blackFunction = new BlackPriceFunction();
   final BlackFunctionData dataBlack = new BlackFunctionData(b0, dfswap[0], sigmaBar);
   final Function1D<BlackFunctionData, Double> func = blackFunction.getPriceFunction(option);
   final double price = func.evaluate(dataBlack) * (swaption.isLong() ? 1.0 : -1.0);
   return CurrencyAmount.of(swaption.getCurrency(), price);
 }