コード例 #1
0
 // Create a payment transaction with valueToMe going back to us
 private synchronized Wallet.SendRequest makeUnsignedChannelContract(Coin valueToMe) {
   Transaction tx = new Transaction(wallet.getParams());
   if (!totalValue.subtract(valueToMe).equals(Coin.ZERO)) {
     clientOutput.setValue(totalValue.subtract(valueToMe));
     tx.addOutput(clientOutput);
   }
   tx.addInput(multisigContract.getOutput(0));
   return Wallet.SendRequest.forTx(tx);
 }
コード例 #2
0
  /**
   * Closes this channel and broadcasts the highest value payment transaction on the network.
   *
   * <p>This will set the state to {@link State#CLOSED} if the transaction is successfully broadcast
   * on the network. If we fail to broadcast for some reason, the state is set to {@link
   * State#ERROR}.
   *
   * <p>If the current state is before {@link State#READY} (ie we have not finished initializing the
   * channel), we simply set the state to {@link State#CLOSED} and let the client handle getting its
   * refund transaction confirmed.
   *
   * @return a future which completes when the provided multisig contract successfully broadcasts,
   *     or throws if the broadcast fails for some reason. Note that if the network simply rejects
   *     the transaction, this future will never complete, a timeout should be used.
   * @throws InsufficientMoneyException If the payment tx would have cost more in fees to spend than
   *     it is worth.
   */
  public synchronized ListenableFuture<Transaction> close() throws InsufficientMoneyException {
    if (storedServerChannel != null) {
      StoredServerChannel temp = storedServerChannel;
      storedServerChannel = null;
      StoredPaymentChannelServerStates channels =
          (StoredPaymentChannelServerStates)
              wallet.getExtensions().get(StoredPaymentChannelServerStates.EXTENSION_ID);
      channels.closeChannel(
          temp); // May call this method again for us (if it wasn't the original caller)
      if (state.compareTo(State.CLOSING) >= 0) return closedFuture;
    }

    if (state.ordinal() < State.READY.ordinal()) {
      log.error("Attempt to settle channel in state " + state);
      state = State.CLOSED;
      closedFuture.set(null);
      return closedFuture;
    }
    if (state != State.READY) {
      // TODO: What is this codepath for?
      log.warn("Failed attempt to settle a channel in state " + state);
      return closedFuture;
    }
    Transaction tx = null;
    try {
      Wallet.SendRequest req = makeUnsignedChannelContract(bestValueToMe);
      tx = req.tx;
      // Provide a throwaway signature so that completeTx won't complain out about unsigned inputs
      // it doesn't
      // know how to sign. Note that this signature does actually have to be valid, so we can't use
      // a dummy
      // signature to save time, because otherwise completeTx will try to re-sign it to make it
      // valid and then
      // die. We could probably add features to the SendRequest API to make this a bit more
      // efficient.
      signMultisigInput(tx, Transaction.SigHash.NONE, true);
      // Let wallet handle adding additional inputs/fee as necessary.
      req.shuffleOutputs = false;
      req.missingSigsMode = Wallet.MissingSigsMode.USE_DUMMY_SIG;
      wallet.completeTx(req); // TODO: Fix things so shuffling is usable.
      feePaidForPayment = req.tx.getFee();
      log.info("Calculated fee is {}", feePaidForPayment);
      if (feePaidForPayment.compareTo(bestValueToMe) > 0) {
        final String msg =
            String.format(
                Locale.US,
                "Had to pay more in fees (%s) than the channel was worth (%s)",
                feePaidForPayment,
                bestValueToMe);
        throw new InsufficientMoneyException(feePaidForPayment.subtract(bestValueToMe), msg);
      }
      // Now really sign the multisig input.
      signMultisigInput(tx, Transaction.SigHash.ALL, false);
      // Some checks that shouldn't be necessary but it can't hurt to check.
      tx.verify(); // Sanity check syntax.
      for (TransactionInput input : tx.getInputs())
        input.verify(); // Run scripts and ensure it is valid.
    } catch (InsufficientMoneyException e) {
      throw e; // Don't fall through.
    } catch (Exception e) {
      log.error(
          "Could not verify self-built tx\nMULTISIG {}\nCLOSE {}",
          multisigContract,
          tx != null ? tx : "");
      throw new RuntimeException(e); // Should never happen.
    }
    state = State.CLOSING;
    log.info("Closing channel, broadcasting tx {}", tx);
    // The act of broadcasting the transaction will add it to the wallet.
    ListenableFuture<Transaction> future = broadcaster.broadcastTransaction(tx).future();
    Futures.addCallback(
        future,
        new FutureCallback<Transaction>() {
          @Override
          public void onSuccess(Transaction transaction) {
            log.info("TX {} propagated, channel successfully closed.", transaction.getHash());
            state = State.CLOSED;
            closedFuture.set(transaction);
          }

          @Override
          public void onFailure(Throwable throwable) {
            log.error("Failed to settle channel, could not broadcast", throwable);
            state = State.ERROR;
            closedFuture.setException(throwable);
          }
        });
    return closedFuture;
  }
コード例 #3
0
  /**
   * Called when the client provides us with a new signature and wishes to increment total payment
   * by size. Verifies the provided signature and only updates values if everything checks out. If
   * the new refundSize is not the lowest we have seen, it is simply ignored.
   *
   * @param refundSize How many satoshis of the original contract are refunded to the client (the
   *     rest are ours)
   * @param signatureBytes The new signature spending the multi-sig contract to a new payment
   *     transaction
   * @throws VerificationException If the signature does not verify or size is out of range (incl
   *     being rejected by the network as dust).
   * @return true if there is more value left on the channel, false if it is now fully used up.
   */
  public synchronized boolean incrementPayment(Coin refundSize, byte[] signatureBytes)
      throws VerificationException, ValueOutOfRangeException, InsufficientMoneyException {
    checkState(state == State.READY);
    checkNotNull(refundSize);
    checkNotNull(signatureBytes);
    TransactionSignature signature = TransactionSignature.decodeFromBitcoin(signatureBytes, true);
    // We allow snapping to zero for the payment amount because it's treated specially later, but
    // not less than
    // the dust level because that would prevent the transaction from being relayed/mined.
    final boolean fullyUsedUp = refundSize.equals(Coin.ZERO);
    if (refundSize.compareTo(clientOutput.getMinNonDustValue()) < 0 && !fullyUsedUp)
      throw new ValueOutOfRangeException(
          "Attempt to refund negative value or value too small to be accepted by the network");
    Coin newValueToMe = totalValue.subtract(refundSize);
    if (newValueToMe.signum() < 0)
      throw new ValueOutOfRangeException("Attempt to refund more than the contract allows.");
    if (newValueToMe.compareTo(bestValueToMe) < 0)
      throw new ValueOutOfRangeException("Attempt to roll back payment on the channel.");

    // Get the wallet's copy of the multisigContract (ie with confidence information), if this is
    // null, the wallet
    // was not connected to the peergroup when the contract was broadcast (which may cause issues
    // down the road, and
    // disables our double-spend check next)
    Transaction walletContract = wallet.getTransaction(multisigContract.getHash());
    checkNotNull(
        walletContract,
        "Wallet did not contain multisig contract {} after state was marked READY",
        multisigContract.getHash());

    // Note that we check for DEAD state here, but this test is essentially useless in production
    // because we will
    // miss most double-spends due to bloom filtering right now anyway. This will eventually fixed
    // by network-wide
    // double-spend notifications, so we just wait instead of attempting to add all dependant
    // outpoints to our bloom
    // filters (and probably missing lots of edge-cases).
    if (walletContract.getConfidence().getConfidenceType()
        == TransactionConfidence.ConfidenceType.DEAD) {
      close();
      throw new VerificationException("Multisig contract was double-spent");
    }

    Transaction.SigHash mode;
    // If the client doesn't want anything back, they shouldn't sign any outputs at all.
    if (fullyUsedUp) mode = Transaction.SigHash.NONE;
    else mode = Transaction.SigHash.SINGLE;

    if (signature.sigHashMode() != mode || !signature.anyoneCanPay())
      throw new VerificationException(
          "New payment signature was not signed with the right SIGHASH flags.");

    Wallet.SendRequest req = makeUnsignedChannelContract(newValueToMe);
    // Now check the signature is correct.
    // Note that the client must sign with SIGHASH_{SINGLE/NONE} | SIGHASH_ANYONECANPAY to allow us
    // to add additional
    // inputs (in case we need to add significant fee, or something...) and any outputs we want to
    // pay to.
    Sha256Hash sighash = req.tx.hashForSignature(0, multisigScript, mode, true);

    if (!clientKey.verify(sighash, signature))
      throw new VerificationException("Signature does not verify on tx\n" + req.tx);
    bestValueToMe = newValueToMe;
    bestValueSignature = signatureBytes;
    updateChannelInWallet();
    return !fullyUsedUp;
  }
コード例 #4
0
  @Test
  public void testUTXOProviderWithWallet() throws Exception {
    final int UNDOABLE_BLOCKS_STORED = 10;
    store = createStore(params, UNDOABLE_BLOCKS_STORED);
    chain = new FullPrunedBlockChain(params, store);

    // Check that we aren't accidentally leaving any references
    // to the full StoredUndoableBlock's lying around (ie memory leaks)
    ECKey outKey = new ECKey();
    int height = 1;

    // Build some blocks on genesis block to create a spendable output.
    Block rollingBlock =
        params
            .getGenesisBlock()
            .createNextBlockWithCoinbase(Block.BLOCK_VERSION_GENESIS, outKey.getPubKey(), height++);
    chain.add(rollingBlock);
    Transaction transaction = rollingBlock.getTransactions().get(0);
    TransactionOutPoint spendableOutput = new TransactionOutPoint(params, 0, transaction.getHash());
    byte[] spendableOutputScriptPubKey = transaction.getOutputs().get(0).getScriptBytes();
    for (int i = 1; i < params.getSpendableCoinbaseDepth(); i++) {
      rollingBlock =
          rollingBlock.createNextBlockWithCoinbase(
              Block.BLOCK_VERSION_GENESIS, outKey.getPubKey(), height++);
      chain.add(rollingBlock);
    }
    rollingBlock = rollingBlock.createNextBlock(null);

    // Create 1 BTC spend to a key in this wallet (to ourselves).
    Wallet wallet = new Wallet(params);
    assertEquals(
        "Available balance is incorrect",
        Coin.ZERO,
        wallet.getBalance(Wallet.BalanceType.AVAILABLE));
    assertEquals(
        "Estimated balance is incorrect",
        Coin.ZERO,
        wallet.getBalance(Wallet.BalanceType.ESTIMATED));

    wallet.setUTXOProvider(store);
    ECKey toKey = wallet.freshReceiveKey();
    Coin amount = Coin.valueOf(100000000);

    Transaction t = new Transaction(params);
    t.addOutput(new TransactionOutput(params, t, amount, toKey));
    t.addSignedInput(spendableOutput, new Script(spendableOutputScriptPubKey), outKey);
    rollingBlock.addTransaction(t);
    rollingBlock.solve();
    chain.add(rollingBlock);

    // Create another spend of 1/2 the value of BTC we have available using the wallet (store coin
    // selector).
    ECKey toKey2 = new ECKey();
    Coin amount2 = amount.divide(2);
    Address address2 = new Address(params, toKey2.getPubKeyHash());
    Wallet.SendRequest req = Wallet.SendRequest.to(address2, amount2);
    wallet.completeTx(req);
    wallet.commitTx(req.tx);
    Coin fee = req.fee;

    // There should be one pending tx (our spend).
    assertEquals(
        "Wrong number of PENDING.4", 1, wallet.getPoolSize(WalletTransaction.Pool.PENDING));
    Coin totalPendingTxAmount = Coin.ZERO;
    for (Transaction tx : wallet.getPendingTransactions()) {
      totalPendingTxAmount = totalPendingTxAmount.add(tx.getValueSentToMe(wallet));
    }

    // The availbale balance should be the 0 (as we spent the 1 BTC that's pending) and estimated
    // should be 1/2 - fee BTC
    assertEquals(
        "Available balance is incorrect",
        Coin.ZERO,
        wallet.getBalance(Wallet.BalanceType.AVAILABLE));
    assertEquals(
        "Estimated balance is incorrect",
        amount2.subtract(fee),
        wallet.getBalance(Wallet.BalanceType.ESTIMATED));
    assertEquals("Pending tx amount is incorrect", amount2.subtract(fee), totalPendingTxAmount);
    try {
      store.close();
    } catch (Exception e) {
    }
  }