/** Prints on the screen the set of rules */ public void print() { for (int i = 0; i < reglas.size(); i++) { Complejo c = (Complejo) reglas.get(i); System.out.print("\nRule " + (i + 1) + ": IF "); c.print(); System.out.print(" THEN " + nombreClase + " -> " + valorNombreClases[c.getClase()] + " "); c.printDistribucion(); } }
/** * Constructor with all the attributes to initialize * * @param ficheroTrain Train file * @param ficheroTest Test file * @param fSalidaTr Out-put train file * @param fSalidaTst Out-put test file * @param fsalida Out-put file * @param semilla seed */ public Prism( String ficheroTrain, String ficheroTest, String fSalidaTr, String fSalidaTst, String fsalida, long semilla) { ficheroSalida = fsalida; ficheroSalidaTr = fSalidaTr; ficheroSalidaTst = fSalidaTst; seed = semilla; datosTrain = new ConjDatos(); // datosEval = new ConjDatos(); datosTest = new ConjDatos(); train = new Dataset(); test = new Dataset(); s = new Selector(0, 0, 0.); conjunto_reglas = new ConjReglas(); try { Randomize.setSeed(seed); System.out.println("la semilla es " + seed); train.leeConjunto(ficheroTrain, true); test.leeConjunto(ficheroTest, false); // if (train.hayAtributosContinuos() /*|| train.hayAtributosDiscretos()*/) { System.err.println("\nPrism may not work properly with real or integer attributes.\n"); // System.exit(-1); hayContinuos = true; } if (!hayContinuos) { train.calculaMasComunes(); // eval.calculaMasComunes(); test.calculaMasComunes(); datosTrain = creaConjunto( train); // Leemos los datos de entrenamiento (todos seguidos como un // String)//datosEval = creaConjunto(eval); datosTest = creaConjunto(test); valores = train.getX2(); // obtengo los valores nominales clases = train.getC2(); clasitas = train.getC(); /*System.out.println(train.getndatos()); System.out.println(train.getnentradas()); for(int i=0;i<train.getndatos();i++){ for(int j=0;j<train.getnentradas();j++) System.out.print(valores[i][j]); System.out.print(clases[i]);System.out.println(clasitas[i]);}*/ // COMENZAMOS EL ALGORITMO PRISM // FOR EACH CLASS C clases = train.dameClases(); int unavez = 0, candidato; for (int i = 0; i < train.getnclases(); i++) { System.out.println("CLASE :" + clases[i] + "\n"); // initialize E to the instance set /*Cuando haya que inicializar de nuevo el conjunto de instancias no es necesario insertar aquellas que se eliminaron, sino que nos va a bastar con inicializar otra vez el conjunto mediante el fichero de entrenamiento. Por eso hay un metodo para insertar una instancia*/ train.leeConjunto(ficheroTrain, false); nombre_atributos = train.dameNombres(); instancias = train.getInstanceSet(); // While E contains instances in class C while (train.hayInstanciasDeClaseC(i)) { // Create a rule R with an empty left-hand side that predicts class C regla = new Complejo(train.getnclases()); regla.setClase(i); regla.adjuntaNombreAtributos(nombre_atributos); // esto lo hacemos solo aqui pq luego vamos quitando selectores del almacen almacen = hazSelectores(train); almacen.adjuntaNombreAtributos(nombre_atributos); do { // FOR EACH ATTRIBUTE A NOT MENTIONED IN R, AND EACH VALUE V accuracy_ant = -1.; p = 0; int seleccionados[] = new int[almacen.size()]; for (int jj = 0; jj < almacen.size(); jj++) seleccionados[jj] = 0; System.out.println(); for (int j = 0; j < almacen.size(); j++) { // tenemos que quitar el selector anterior if (j > 0) regla.removeSelector(s); s = almacen.getSelector(j); // if(i==0) s.print(); // CONSIDER ADDING THE CONDITION A=V TO THE LHS OF R regla.addSelector(s); accuracy = getAccuracy(i); // if(i==0) { System.out.println("correctas " + num_correctas + " cubiertas " + num_cubiertas); System.out.println("Acurracy " + accuracy); // } if ((accuracy > accuracy_ant) || ((accuracy == accuracy_ant) && (num_correctas > p))) { // if((accuracy==accuracy_ant) &&(num_correctas>p)){ // System.out.println("atn "+accuracy_ant); // System.out.println("ahora "+accuracy); accuracy_ant = accuracy; seleccionado = j; p = num_correctas; // si se encuentra un superior hay que quitar // todo lo q se hay ido almacenando en esta iteracion for (int jj = 0; jj < almacen.size(); jj++) seleccionados[jj] = 0; // } } else { if ((accuracy == accuracy_ant) && (num_correctas == p)) { seleccionados[seleccionado] = 1; seleccionados[j] = 1; } } } // seleccionamos uno de los seleccionados en el caso de empate int contador = 0; for (int jj = 0; jj < almacen.size(); jj++) { if (seleccionados[jj] == 1) { contador++; System.out.println("OPCION " + jj); } } if (contador > 0) { candidato = Randomize.RandintClosed(1, contador); contador = 0; for (int jj = 0; jj < almacen.size(); jj++) { if (seleccionados[jj] == 1) { contador++; if (contador == candidato) seleccionado = jj; } } } System.out.println("ELEGIDO " + seleccionado); // antes hay que quitar el q metimos regla.removeSelector(s); s = almacen.getSelector(seleccionado); s.print(); // ADD A=V TO R regla.addSelector(s); /*AHORA HAY QUE QUITAR DEL ALMACEN SE SELECTORES AQUELLOS QUE HACEN REFERENCIA AL ATRIBUTO SELECCIONADO*/ // obtener el atributo del selector ganador atributo = s.getAtributo(); // se borran todos los q tengan ese atributo // System.out.println("ALMACEN");almacen.print(); almacen.removeSelectorAtributo(atributo); reglaPerfecta = perfectRule(regla, train); } while (!reglaPerfecta && (regla.size() < train.getnentradas())); System.out.println("\n"); System.out.println("\nREGLA............................................"); regla.print(); System.out.println("\n"); /*necesitamos evaluar la regla para obtener la salida del metodo para compararla con la salida esperada*/ evaluarComplejo(regla, datosTrain); // INCLUIMOS ESTA REGLA YA PARA EL CONJUNTO FINAL DE REGLAS conjunto_reglas.addRegla(regla); // REMOVE THE INSTANCES COVERED BY R FROM E // Instance instancia; /*for(int k=0;k<instancias.getNumInstances();k++){ instancia=instancias.getInstance(k); System.out.print(k+" "); instancia.print(); System.out.println(); }*/ removeInstancesCovered(i); for (int k = 0; k < instancias.getNumInstances(); k++) { instancia = instancias.getInstance(k); clase = instancia.getOutputNominalValuesInt(0); if (clase == i) { System.out.print(k + " "); instancia.print(); System.out.println(); } } // instancias.print(); System.out.println("\n"); } // del while } // del for de las clases // EVALUAMOS LA CALIDAD DE LAS REGLAS int[] clasesEval; clasesEval = train.getC(); muestPorClaseEval = new int[train.getnclases()]; for (int j = 0; j < train.getnclases(); j++) { muestPorClaseEval[j] = 0; for (int i = 0; i < datosTrain.size(); i++) { if ( /*valorClases[j]*/ j == clasesEval[i]) { muestPorClaseEval[j]++; } } } conjunto_reglas.eliminaRepetidos(1); evReg = new EvaluaCalidadReglas( conjunto_reglas, datosTrain, datosTest, muestPorClaseEval, muestPorClaseEval, clases); // GENERAMOS LA SALIDA generaSalida(); System.out.println("la semilla es " + seed); } // del if } catch (IOException e) { System.err.println("There was a problem while trying to read the dataset files:"); System.err.println("-> " + e); // System.exit(0); } }