/** {@inheritDoc} */
 public double getLInfDistance(RealVector v) throws IllegalArgumentException {
   checkVectorDimensions(v.getDimension());
   if (v instanceof OpenMapRealVector) {
     return getLInfDistance((OpenMapRealVector) v);
   }
   return getLInfDistance(v.getData());
 }
    /** {@inheritDoc} */
    public RealVector solve(RealVector b) throws IllegalArgumentException, InvalidMatrixException {
      try {
        return solve((RealVectorImpl) b);
      } catch (ClassCastException cce) {

        final int m = lTData.length;
        if (b.getDimension() != m) {
          throw MathRuntimeException.createIllegalArgumentException(
              "vector length mismatch: got {0} but expected {1}", b.getDimension(), m);
        }

        final double[] x = b.getData();

        // Solve LY = b
        for (int j = 0; j < m; j++) {
          final double[] lJ = lTData[j];
          x[j] /= lJ[j];
          final double xJ = x[j];
          for (int i = j + 1; i < m; i++) {
            x[i] -= xJ * lJ[i];
          }
        }

        // Solve LTX = Y
        for (int j = m - 1; j >= 0; j--) {
          x[j] /= lTData[j][j];
          final double xJ = x[j];
          for (int i = 0; i < j; i++) {
            x[i] -= xJ * lTData[i][j];
          }
        }

        return new RealVectorImpl(x, false);
      }
    }
 /** {@inheritDoc} */
 public OpenMapRealVector add(RealVector v) throws IllegalArgumentException {
   checkVectorDimensions(v.getDimension());
   if (v instanceof OpenMapRealVector) {
     return add((OpenMapRealVector) v);
   }
   return add(v.getData());
 }
  private static Intersection getIntersection(Ray ray, SphereObject obj, Model model) {
    RealMatrix transform = obj.getTransform();
    final RealMatrix transformInverse = obj.getTransformInverse();
    ray = ray.transform(transformInverse);
    Vector3D c = VectorUtils.toVector3D(obj.getCenter());
    Vector3D p0 = VectorUtils.toVector3D(ray.getP0());
    Vector3D p1 = VectorUtils.toVector3D(ray.getP1());
    float a = (float) p1.dotProduct(p1);
    Vector3D p0c = p0.subtract(c);
    float b = (float) p1.dotProduct(p0c) * 2.0f;

    float cc = (float) (p0c.dotProduct(p0c)) - obj.getSize() * obj.getSize();
    Double t = quadraticEquationRoot1(a, b, cc);
    if (t == null || t < EPSILON) {
      return new Intersection(false);
    }
    Intersection result = new Intersection(true);
    result.setObject(obj);
    final Vector3D p = p0.add(p1.scalarMultiply(t));
    RealVector pv = VectorUtils.toRealVector(p);
    pv.setEntry(3, 1.0);
    RealVector pt = transform.preMultiply(pv);
    result.setP(VectorUtils.toVector3D(pt));
    RealVector nv = pv.subtract(obj.getCenter());
    final RealVector nvt = transformInverse.transpose().preMultiply(nv);
    result.setN(VectorUtils.toVector3D(nvt).normalize());
    result.setDistance(t);
    return result;
  }
Esempio n. 5
0
    /** {@inheritDoc} */
    public RealVector solve(RealVector b) {
      final int m = pivot.length;
      if (b.getDimension() != m) {
        throw new DimensionMismatchException(b.getDimension(), m);
      }
      if (singular) {
        throw new SingularMatrixException();
      }

      final double[] bp = new double[m];

      // Apply permutations to b
      for (int row = 0; row < m; row++) {
        bp[row] = b.getEntry(pivot[row]);
      }

      // Solve LY = b
      for (int col = 0; col < m; col++) {
        final double bpCol = bp[col];
        for (int i = col + 1; i < m; i++) {
          bp[i] -= bpCol * lu[i][col];
        }
      }

      // Solve UX = Y
      for (int col = m - 1; col >= 0; col--) {
        bp[col] /= lu[col][col];
        final double bpCol = bp[col];
        for (int i = 0; i < col; i++) {
          bp[i] -= bpCol * lu[i][col];
        }
      }

      return new ArrayRealVector(bp, false);
    }
 @Override
 public Label predict(Instance instance) {
   Label l = null;
   if (instance.getLabel() instanceof ClassificationLabel || instance.getLabel() == null) {
     // ----------------- declare variables ------------------
     double lambda = 0.0;
     RealVector x_instance = new ArrayRealVector(matrixX.getColumnDimension(), 0);
     double result = 0.0;
     // -------------------------- initialize xi -------------------------
     for (int idx = 0; idx < matrixX.getColumnDimension(); idx++) {
       x_instance.setEntry(idx, instance.getFeatureVector().get(idx + 1));
     }
     // ------------------ get lambda -----------------------
     for (int j = 0; j < alpha.getDimension(); j++) {
       lambda += alpha.getEntry(j) * kernelFunction(matrixX.getRowVector(j), x_instance);
     }
     // ----------------- make prediction -----------------
     Sigmoid g = new Sigmoid(); // helper function
     result = g.value(lambda);
     l = new ClassificationLabel(result < 0.5 ? 0 : 1);
   } else {
     System.out.println("label type error!");
   }
   return l;
 }
 /**
  * Serialize a {@link RealVector}.
  *
  * <p>This method is intended to be called from within a private <code>writeObject</code> method
  * (after a call to <code>oos.defaultWriteObject()</code>) in a class that has a {@link
  * RealVector} field, which should be declared <code>transient</code>. This way, the default
  * handling does not serialize the vector (the {@link RealVector} interface is not serializable by
  * default) but this method does serialize it specifically.
  *
  * <p>The following example shows how a simple class with a name and a real vector should be
  * written:
  *
  * <pre><code>
  * public class NamedVector implements Serializable {
  *
  *     private final String name;
  *     private final transient RealVector coefficients;
  *
  *     // omitted constructors, getters ...
  *
  *     private void writeObject(ObjectOutputStream oos) throws IOException {
  *         oos.defaultWriteObject();  // takes care of name field
  *         MatrixUtils.serializeRealVector(coefficients, oos);
  *     }
  *
  *     private void readObject(ObjectInputStream ois) throws ClassNotFoundException, IOException {
  *         ois.defaultReadObject();  // takes care of name field
  *         MatrixUtils.deserializeRealVector(this, "coefficients", ois);
  *     }
  *
  * }
  * </code></pre>
  *
  * @param vector real vector to serialize
  * @param oos stream where the real vector should be written
  * @exception IOException if object cannot be written to stream
  * @see #deserializeRealVector(Object, String, ObjectInputStream)
  */
 public static void serializeRealVector(final RealVector vector, final ObjectOutputStream oos)
     throws IOException {
   final int n = vector.getDimension();
   oos.writeInt(n);
   for (int i = 0; i < n; ++i) {
     oos.writeDouble(vector.getEntry(i));
   }
 }
 /**
  * Returns an estimate of the solution to the linear system A &middot; x = b.
  *
  * @param a the linear operator A of the system
  * @param b the right-hand side vector
  * @return a new vector containing the solution
  * @throws NullArgumentException if one of the parameters is {@code null}
  * @throws NonSquareOperatorException if {@code a} is not square
  * @throws DimensionMismatchException if {@code b} has dimensions inconsistent with {@code a}
  * @throws MaxCountExceededException at exhaustion of the iteration count, unless a custom {@link
  *     org.apache.commons.math3.util.Incrementor.MaxCountExceededCallback callback} has been set
  *     at construction of the {@link IterationManager}
  */
 public RealVector solve(final RealLinearOperator a, final RealVector b)
     throws NullArgumentException, NonSquareOperatorException, DimensionMismatchException,
         MaxCountExceededException {
   MathUtils.checkNotNull(a);
   final RealVector x = new ArrayRealVector(a.getColumnDimension());
   x.set(0.);
   return solveInPlace(a, b, x);
 }
 private static int toColour(RealVector ambient) {
   final double r = ambient.getEntry(0);
   final double g = ambient.getEntry(1);
   final double b = ambient.getEntry(2);
   int rc = 256 * 256 * (int) (255. * r);
   int rg = 256 * (int) (255. * g);
   int rb = (int) (255. * b);
   return rc + rg + rb;
 }
 /** {@inheritDoc} */
 public void setRowVector(final int row, final RealVector vector) {
   MatrixUtils.checkRowIndex(this, row);
   final int nCols = getColumnDimension();
   if (vector.getDimension() != nCols) {
     throw new MatrixDimensionMismatchException(1, vector.getDimension(), 1, nCols);
   }
   for (int i = 0; i < nCols; ++i) {
     setEntry(row, i, vector.getEntry(i));
   }
 }
 /** {@inheritDoc} */
 public OpenMapRealVector ebeMultiply(RealVector v) throws IllegalArgumentException {
   checkVectorDimensions(v.getDimension());
   OpenMapRealVector res = new OpenMapRealVector(this);
   Iterator iter = res.entries.iterator();
   while (iter.hasNext()) {
     iter.advance();
     res.setEntry(iter.key(), iter.value() * v.getEntry(iter.key()));
   }
   return res;
 }
 /** {@inheritDoc} */
 public void setColumnVector(final int column, final RealVector vector) {
   MatrixUtils.checkColumnIndex(this, column);
   final int nRows = getRowDimension();
   if (vector.getDimension() != nRows) {
     throw new MatrixDimensionMismatchException(vector.getDimension(), 1, nRows, 1);
   }
   for (int i = 0; i < nRows; ++i) {
     setEntry(i, column, vector.getEntry(i));
   }
 }
 /** {@inheritDoc} */
 public double dotProduct(RealVector v) throws IllegalArgumentException {
   checkVectorDimensions(v.getDimension());
   double res = 0;
   Iterator iter = entries.iterator();
   while (iter.hasNext()) {
     iter.advance();
     res += v.getEntry(iter.key()) * iter.value();
   }
   return res;
 }
 /**
  * Generic copy constructor.
  *
  * @param v The instance to copy from
  */
 public OpenMapRealVector(RealVector v) {
   virtualSize = v.getDimension();
   entries = new OpenIntToDoubleHashMap(0.0);
   epsilon = DEFAULT_ZERO_TOLERANCE;
   for (int key = 0; key < virtualSize; key++) {
     double value = v.getEntry(key);
     if (!isZero(value)) {
       entries.put(key, value);
     }
   }
 }
Esempio n. 15
0
 @Override
 public Vector<Double> row(int i) {
   final RealVector v = new RealVector(alpha.length);
   if (i > 0) {
     v.put(i - 1, beta[i - 1]);
   }
   v.put(i, alpha[i]);
   if (i + 1 < alpha.length) {
     v.put(i + 1, beta[i]);
   }
   return v;
 }
  /**
   * @return A matrix containing the row stochastic values of the matrix that contains the
   *     information about the item categorization, to be used by a {@code HIRItemScorer}.
   */
  public RealMatrix RowStochastic() {
    for (int i = 0; i < itemSize; i++) {
      RealVector forIter = rowStochastic.getRowVector(i);

      double sum = forIter.getL1Norm();
      if (sum != 0) {
        forIter.mapDivideToSelf(sum);
        rowStochastic.setRowVector(i, forIter);
      }
    }
    return rowStochastic;
  }
 @Test
 public void testGenreVector() {
   double[] testVec1 = {0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
   double[] testVec2 = {0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
   RealVector testRealVector1 = MatrixUtils.createRealVector(testVec1);
   RealVector testRealVector2 = MatrixUtils.createRealVector(testVec2);
   assertThat(gdao.getItemGenre(0), equalTo(testRealVector1));
   assertThat(gdao.getItemGenre(5), equalTo(testRealVector2));
   assertThat(testRealVector1.getDimension(), equalTo(gdao.getGenreSize()));
   assertThat(gdao.getItemGenre(0).getDimension(), equalTo(gdao.getGenreSize()));
   assertThat(testVec1.length, equalTo(gdao.getGenreSize()));
 }
 @Override
 public void train(List<Instance> instances) {
   // ------------------------ initialize rows and columns ---------------------
   int rows = instances.size();
   int columns = 0;
   // get max columns
   for (Instance i : instances) {
     int localColumns = Collections.max(i.getFeatureVector().getFeatureMap().keySet());
     if (localColumns > columns) columns = localColumns;
   }
   // ------------------------ initialize alpha vector -----------------------
   alpha = new ArrayRealVector(rows, 0);
   // ------------------------ initialize base X and Y for use --------------------------
   double[][] X = new double[rows][columns];
   double[] Y = new double[rows];
   for (int i = 0; i < rows; i++) {
     Y[i] = ((ClassificationLabel) instances.get(i).getLabel()).getLabelValue();
     for (int j = 0; j < columns; j++) {
       X[i][j] = instances.get(i).getFeatureVector().get(j + 1);
     }
   }
   // ---------------------- gram matrix -------------------
   matrixX = new Array2DRowRealMatrix(X);
   RealMatrix gram = new Array2DRowRealMatrix(rows, rows);
   for (int i = 0; i < rows; i++) {
     for (int j = 0; j < rows; j++) {
       gram.setEntry(i, j, kernelFunction(matrixX.getRowVector(i), matrixX.getRowVector(j)));
     }
   }
   // ---------------------- gradient ascent --------------------------
   Sigmoid g = new Sigmoid(); // helper function
   System.out.println("Training start...");
   System.out.println(
       "Learning rate: " + _learning_rate + " Training times: " + _training_iterations);
   for (int idx = 0; idx < _training_iterations; idx++) {
     System.out.println("Training iteration: " + (idx + 1));
     for (int k = 0; k < rows; k++) {
       double gradient_ascent = 0.0;
       RealVector alpha_gram = gram.operate(alpha);
       for (int i = 0; i < rows; i++) {
         double lambda = alpha_gram.getEntry(i);
         double kernel = gram.getEntry(i, k);
         gradient_ascent =
             gradient_ascent
                 + Y[i] * g.value(-lambda) * kernel
                 + (1 - Y[i]) * g.value(lambda) * (-kernel);
       }
       alpha.setEntry(k, alpha.getEntry(k) + _learning_rate * gradient_ascent);
     }
   }
   System.out.println("Training done!");
 }
Esempio n. 19
0
 public static void main(String[] args) {
   RealMatrix coefficients2 =
       new Array2DRowRealMatrix(
           new double[][] {
             {0.0D, 1.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D},
             {0.0D, 0.0D, 0.857D, 0.0D, 0.054D, 0.018D, 0.0D, 0.071D, 0.0D, 0.0D, 0.0D},
             {0.0D, 0.0D, 0.0D, 1.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D},
             {0.0D, 0.0D, 0.857D, 0.0D, 0.054D, 0.018D, 0.0D, 0.071D, 0.0D, 0.0D, 0.0D},
             {0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 1.0D, 0.0D, 0.0D, 0.0D, 0.0D},
             {0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 1.0D, 0.0D, 0.0D, 0.0D, 0.0D},
             {0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 1.0D, 0.0D, 0.0D},
             {0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.6D, 0.4D},
             {0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 1.0D},
             {0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 1.0D, 0.0D, 0.0D, 1.0D},
             {0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D}
           },
           false);
   for (int i = 0; i < 11; i++) {
     coefficients2.setEntry(i, i, -1d);
   }
   coefficients2 = coefficients2.transpose();
   DecompositionSolver solver = new LUDecompositionImpl(coefficients2).getSolver();
   System.out.println("1 method my Value :");
   RealVector constants =
       new ArrayRealVector(new double[] {-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, false);
   RealVector solution = solver.solve(constants);
   double[] data = solution.getData();
   DecimalFormat df = new DecimalFormat();
   df.setRoundingMode(RoundingMode.DOWN);
   System.out.println("Корни уравнения:");
   for (double dd : data) {
     System.out.print(df.format(dd) + " ");
   }
   System.out.println();
   System.out.println(
       "Среднее число процессорных операций, выполняемых при одном прогоне алгоритма: "
           + operationsByProcess(data, arr));
   System.out.println("Среднее число обращений к файлам:");
   for (int i = 1; i < 4; i++) {
     System.out.println("  Файл " + i + " : " + fileMiddleRequest(data, arr, i));
   }
   System.out.println("Среднее количество информации передаваемой при одном обращении к файлам:");
   for (int i = 1; i < 4; i++) {
     System.out.println("  Файл " + i + " : " + bitsPerFileTransfer(data, arr, i));
   }
   System.out.println(
       "Сумма среднего числа обращений к основным операторам: " + operatorExecute(data, arr));
   System.out.println("Средняя трудоемкость этапа: " + middleWork(data, arr));
 }
 /**
  * Performs all dimension checks on the parameters of {@link #solve(RealLinearOperator,
  * RealVector, RealVector) solve} and {@link #solveInPlace(RealLinearOperator, RealVector,
  * RealVector) solveInPlace}, and throws an exception if one of the checks fails.
  *
  * @param a the linear operator A of the system
  * @param b the right-hand side vector
  * @param x0 the initial guess of the solution
  * @throws NullArgumentException if one of the parameters is {@code null}
  * @throws NonSquareOperatorException if {@code a} is not square
  * @throws DimensionMismatchException if {@code b} or {@code x0} have dimensions inconsistent with
  *     {@code a}
  */
 protected static void checkParameters(
     final RealLinearOperator a, final RealVector b, final RealVector x0)
     throws NullArgumentException, NonSquareOperatorException, DimensionMismatchException {
   MathUtils.checkNotNull(a);
   MathUtils.checkNotNull(b);
   MathUtils.checkNotNull(x0);
   if (a.getRowDimension() != a.getColumnDimension()) {
     throw new NonSquareOperatorException(a.getRowDimension(), a.getColumnDimension());
   }
   if (b.getDimension() != a.getRowDimension()) {
     throw new DimensionMismatchException(b.getDimension(), a.getRowDimension());
   }
   if (x0.getDimension() != a.getColumnDimension()) {
     throw new DimensionMismatchException(x0.getDimension(), a.getColumnDimension());
   }
 }
 /** {@inheritDoc} */
 public RealMatrix outerProduct(RealVector v) throws IllegalArgumentException {
   checkVectorDimensions(v.getDimension());
   if (v instanceof OpenMapRealVector) {
     return outerproduct((OpenMapRealVector) v);
   }
   RealMatrix res = new OpenMapRealMatrix(virtualSize, virtualSize);
   Iterator iter = entries.iterator();
   while (iter.hasNext()) {
     iter.advance();
     int row = iter.key();
     for (int col = 0; col < virtualSize; col++) {
       res.setEntry(row, col, iter.value() * v.getEntry(col));
     }
   }
   return res;
 }
Esempio n. 22
0
 private static Intersection getIntersection(
     TriangleObject obj, DecompositionSolver solver, Vector3D p, Vector3D pc, double[] params) {
   RealVector constants = new ArrayRealVector(params, false);
   RealVector solution = solver.solve(constants);
   double alpfa = solution.getEntry(0);
   double beta = solution.getEntry(1);
   boolean match = false;
   if (alpfa >= 0 && beta >= 0 && alpfa + beta <= 1.0) {
     match = true;
   } else {
     match = false;
   }
   final Intersection intersection = new Intersection(match);
   intersection.setObject(obj);
   intersection.setP(p);
   return intersection;
 }
Esempio n. 23
0
 @Override
 public double dotProduct(RealVector v) {
   double dot = 0;
   for (int i = 0; i < data.length; i++) {
     dot += data[i] * v.getEntry(i);
   }
   return dot;
 }
Esempio n. 24
0
  @Test
  public void testConstructors() {

    OpenMapRealVector v0 = new OpenMapRealVector();
    Assert.assertEquals("testData len", 0, v0.getDimension());

    OpenMapRealVector v1 = new OpenMapRealVector(7);
    Assert.assertEquals("testData len", 7, v1.getDimension());
    Assert.assertEquals("testData is 0.0 ", 0.0, v1.getEntry(6), 0);

    OpenMapRealVector v3 = new OpenMapRealVector(vec1);
    Assert.assertEquals("testData len", 3, v3.getDimension());
    Assert.assertEquals("testData is 2.0 ", 2.0, v3.getEntry(1), 0);

    // SparseRealVector v4 = new SparseRealVector(vec4, 3, 2);
    // Assert.assertEquals("testData len", 2, v4.getDimension());
    // Assert.assertEquals("testData is 4.0 ", 4.0, v4.getEntry(0));
    // try {
    //    new SparseRealVector(vec4, 8, 3);
    //    Assert.fail("MathIllegalArgumentException expected");
    // } catch (MathIllegalArgumentException ex) {
    // expected behavior
    // }

    RealVector v5_i = new OpenMapRealVector(dvec1);
    Assert.assertEquals("testData len", 9, v5_i.getDimension());
    Assert.assertEquals("testData is 9.0 ", 9.0, v5_i.getEntry(8), 0);

    OpenMapRealVector v5 = new OpenMapRealVector(dvec1);
    Assert.assertEquals("testData len", 9, v5.getDimension());
    Assert.assertEquals("testData is 9.0 ", 9.0, v5.getEntry(8), 0);

    OpenMapRealVector v7 = new OpenMapRealVector(v1);
    Assert.assertEquals("testData len", 7, v7.getDimension());
    Assert.assertEquals("testData is 0.0 ", 0.0, v7.getEntry(6), 0);

    SparseRealVectorTestImpl v7_i = new SparseRealVectorTestImpl(vec1);

    OpenMapRealVector v7_2 = new OpenMapRealVector(v7_i);
    Assert.assertEquals("testData len", 3, v7_2.getDimension());
    Assert.assertEquals("testData is 0.0 ", 2.0d, v7_2.getEntry(1), 0);

    OpenMapRealVector v8 = new OpenMapRealVector(v1);
    Assert.assertEquals("testData len", 7, v8.getDimension());
    Assert.assertEquals("testData is 0.0 ", 0.0, v8.getEntry(6), 0);
  }
    /**
     * Solve the linear equation A &times; X = B in least square sense.
     *
     * <p>The m&times;n matrix A may not be square, the solution X is such that ||A &times; X - B||
     * is minimal.
     *
     * @param b right-hand side of the equation A &times; X = B
     * @return a vector X that minimizes the two norm of A &times; X - B
     * @exception IllegalArgumentException if matrices dimensions don't match
     * @exception InvalidMatrixException if decomposed matrix is singular
     */
    public RealVector solve(final RealVector b)
        throws IllegalArgumentException, InvalidMatrixException {

      if (b.getDimension() != uT.getColumnDimension()) {
        throw MathRuntimeException.createIllegalArgumentException(
            "vector length mismatch: got {0} but expected {1}",
            b.getDimension(), uT.getColumnDimension());
      }

      final RealVector w = uT.operate(b);
      for (int i = 0; i < singularValues.length; ++i) {
        final double si = singularValues[i];
        if (si == 0) {
          throw new SingularMatrixException();
        }
        w.setEntry(i, w.getEntry(i) / si);
      }
      return v.operate(w);
    }
Esempio n. 26
0
  /* Check that the operations do not throw an exception (cf. MATH-645). */
  @Test
  public void testConcurrentModification() {
    final RealVector u = new OpenMapRealVector(3, 1e-6);
    u.setEntry(0, 1);
    u.setEntry(1, 0);
    u.setEntry(2, 2);

    final RealVector v1 = new OpenMapRealVector(3, 1e-6);
    v1.setEntry(0, 0);
    v1.setEntry(1, 3);
    v1.setEntry(2, 0);

    u.ebeMultiply(v1);
    u.ebeDivide(v1);
  }
  /** {@inheritDoc} */
  public RealVector preMultiply(final RealVector v) throws DimensionMismatchException {
    try {
      return new ArrayRealVector(preMultiply(((ArrayRealVector) v).getDataRef()), false);
    } catch (ClassCastException cce) {

      final int nRows = getRowDimension();
      final int nCols = getColumnDimension();
      if (v.getDimension() != nRows) {
        throw new DimensionMismatchException(v.getDimension(), nRows);
      }

      final double[] out = new double[nCols];
      for (int col = 0; col < nCols; ++col) {
        double sum = 0;
        for (int i = 0; i < nRows; ++i) {
          sum += getEntry(i, col) * v.getEntry(i);
        }
        out[col] = sum;
      }

      return new ArrayRealVector(out, false);
    }
  }
  /** {@inheritDoc} */
  @Override
  public RealVector operate(final RealVector v) throws DimensionMismatchException {
    try {
      return new ArrayRealVector(operate(((ArrayRealVector) v).getDataRef()), false);
    } catch (ClassCastException cce) {
      final int nRows = getRowDimension();
      final int nCols = getColumnDimension();
      if (v.getDimension() != nCols) {
        throw new DimensionMismatchException(v.getDimension(), nCols);
      }

      final double[] out = new double[nRows];
      for (int row = 0; row < nRows; ++row) {
        double sum = 0;
        for (int i = 0; i < nCols; ++i) {
          sum += getEntry(row, i) * v.getEntry(i);
        }
        out[row] = sum;
      }

      return new ArrayRealVector(out, false);
    }
  }
Esempio n. 29
0
    private void stochasticUpdateStep(Pair<Integer, Set<Integer>> wordPlusContexts, int s) {
      double eta = learningRateDecay(s);
      int wordIndex = wordPlusContexts.getFirst(); // actual center word
      // Set h vector equal to the kth row of weight matrix W1. h = x' * W = W[k,:] = v(input)
      RealVector h = W1.getRowVector(wordIndex); // 1xN row vector

      for (int contextWordIndex : wordPlusContexts.getSecond()) {
        Set<Integer> negativeContexts;
        if (sampleUnigram) {
          negativeContexts = negativeSampleContexts(wordIndex, noiseSampler);
        } else {
          negativeContexts = negativeSampleContexts(wordIndex);
        }
        // wordIndex is the input word
        // negativeContexts is the k negative contexts
        // contextWordIndex is 1 positive context

        // First update the output vectors for 1 positive context
        RealVector vPrime_j = W2.getColumnVector(contextWordIndex); // Nx1 column vector
        double u = h.dotProduct(vPrime_j); // u_j = vPrime(output) * v(input)
        double t_j = 1.0; // t_j := 1{j == contextWordIndex}
        double scale = sigmoid(u) - t_j;
        scale = eta * scale;
        RealVector gradientOut2Hidden = h.mapMultiply(scale);
        vPrime_j = vPrime_j.subtract(gradientOut2Hidden);
        W2.setColumnVector(contextWordIndex, vPrime_j);

        // Next backpropagate the error to the hidden layer and update the input vectors
        RealVector v_I = h;
        u = h.dotProduct(vPrime_j);
        scale = sigmoid(u) - t_j;
        scale = eta * scale;
        RealVector gradientHidden2In = vPrime_j.mapMultiply(scale);
        v_I = v_I.subtract(gradientHidden2In);
        h = v_I;
        W1.setRowVector(wordIndex, v_I);

        // Repeat update process for k negative contexts
        t_j = 0.0; // t_j := 1{j == contextWordIndex}
        for (int negContext : negativeContexts) {
          vPrime_j = W2.getColumnVector(negContext);
          u = h.dotProduct(vPrime_j);
          scale = sigmoid(u) - t_j;
          scale = eta * scale;
          gradientOut2Hidden = h.mapMultiply(scale);
          vPrime_j = vPrime_j.subtract(gradientOut2Hidden);
          W2.setColumnVector(negContext, vPrime_j);

          // Backpropagate the error to the hidden layer and update the input vectors
          v_I = h;
          u = h.dotProduct(vPrime_j);
          scale = sigmoid(u) - t_j;
          scale = eta * scale;
          gradientHidden2In = vPrime_j.mapMultiply(scale);
          v_I = v_I.subtract(gradientHidden2In);
          h = v_I;
          W1.setRowVector(wordIndex, v_I);
        }
      }
    }
Esempio n. 30
0
 private static double sigmoid(RealVector x, RealVector y) {
   double z = x.dotProduct(y);
   return sigmoid(z);
 }