public static int getIdOf(Graph g, double latitude, double longitude) { int s = g.getNodes(); NodeAccess na = g.getNodeAccess(); for (int i = 0; i < s; i++) { if (Math.abs(na.getLatitude(i) - latitude) < 1e-4 && Math.abs(na.getLongitude(i) - longitude) < 1e-4) { return i; } } return -1; }
void queryIndex(Graph g, LocationIndex idx, double lat, double lon, double expectedDist) { QueryResult res = idx.findClosest(lat, lon, EdgeFilter.ALL_EDGES); if (!res.isValid()) { errors.add("node not found for " + lat + "," + lon); return; } GHPoint found = res.getSnappedPoint(); double dist = distCalc.calcDist(lat, lon, found.lat, found.lon); if (Math.abs(dist - expectedDist) > .1) { errors.add( "queried lat,lon=" + (float) lat + "," + (float) lon + " (found: " + (float) found.lat + "," + (float) found.lon + ")" + "\n expected distance:" + expectedDist + ", but was:" + dist); } }
public boolean containsLatitude(Graph g, EdgeIterator iter, double latitude) { NodeAccess na = g.getNodeAccess(); while (iter.next()) { if (Math.abs(na.getLatitude(iter.getAdjNode()) - latitude) < 1e-4) return true; } return false; }
public TestAlgoCollector assertDistance( AlgoHelperEntry algoEntry, List<QueryResult> queryList, OneRun oneRun) { List<Path> altPaths = new ArrayList<Path>(); QueryGraph queryGraph = new QueryGraph(algoEntry.getQueryGraph()); queryGraph.lookup(queryList); AlgorithmOptions opts = algoEntry.opts; FlagEncoder encoder = opts.getFlagEncoder(); if (encoder.supports(TurnWeighting.class)) algoEntry.setAlgorithmOptions( AlgorithmOptions.start(opts) .weighting( new TurnWeighting( opts.getWeighting(), opts.getFlagEncoder(), (TurnCostExtension) queryGraph.getExtension())) .build()); for (int i = 0; i < queryList.size() - 1; i++) { RoutingAlgorithm algo = algoEntry.createAlgo(queryGraph); Path path = algo.calcPath(queryList.get(i).getClosestNode(), queryList.get(i + 1).getClosestNode()); // System.out.println(path.calcInstructions().createGPX("temp", 0, "GMT")); altPaths.add(path); } PathMerger pathMerger = new PathMerger().setCalcPoints(true).setSimplifyResponse(false).setEnableInstructions(true); AltResponse rsp = new AltResponse(); pathMerger.doWork(rsp, altPaths, trMap.getWithFallBack(Locale.US)); if (rsp.hasErrors()) { errors.add( algoEntry + " response contains errors. Expected distance: " + rsp.getDistance() + ", expected points: " + oneRun + ". " + queryList + ", errors:" + rsp.getErrors()); return this; } PointList pointList = rsp.getPoints(); double tmpDist = pointList.calcDistance(distCalc); if (Math.abs(rsp.getDistance() - tmpDist) > 2) { errors.add( algoEntry + " path.getDistance was " + rsp.getDistance() + "\t pointList.calcDistance was " + tmpDist + "\t (expected points " + oneRun.getLocs() + ", expected distance " + oneRun.getDistance() + ") " + queryList); } if (Math.abs(rsp.getDistance() - oneRun.getDistance()) > 2) { errors.add( algoEntry + " returns path not matching the expected distance of " + oneRun.getDistance() + "\t Returned was " + rsp.getDistance() + "\t (expected points " + oneRun.getLocs() + ", was " + pointList.getSize() + ") " + queryList); } // There are real world instances where A-B-C is identical to A-C (in meter precision). if (Math.abs(pointList.getSize() - oneRun.getLocs()) > 1) { errors.add( algoEntry + " returns path not matching the expected points of " + oneRun.getLocs() + "\t Returned was " + pointList.getSize() + "\t (expected distance " + oneRun.getDistance() + ", was " + rsp.getDistance() + ") " + queryList); } return this; }
void contractNodes() { meanDegree = g.getAllEdges().getMaxId() / g.getNodes(); int level = 1; counter = 0; int initSize = sortedNodes.getSize(); int logSize = (int) Math.round(Math.max(10, sortedNodes.getSize() / 100 * logMessagesPercentage)); if (logMessagesPercentage == 0) logSize = Integer.MAX_VALUE; // preparation takes longer but queries are slightly faster with preparation // => enable it but call not so often boolean periodicUpdate = true; StopWatch periodSW = new StopWatch(); int updateCounter = 0; int periodicUpdatesCount = Math.max(10, sortedNodes.getSize() / 100 * periodicUpdatesPercentage); if (periodicUpdatesPercentage == 0) periodicUpdate = false; // disable as preparation is slower and query time does not benefit int lastNodesLazyUpdates = lastNodesLazyUpdatePercentage == 0 ? 0 : sortedNodes.getSize() / 100 * lastNodesLazyUpdatePercentage; StopWatch lazySW = new StopWatch(); // Recompute priority of uncontracted neighbors. // Without neighborupdates preparation is faster but we need them // to slightly improve query time. Also if not applied too often it decreases the shortcut // number. boolean neighborUpdate = true; if (neighborUpdatePercentage == 0) neighborUpdate = false; StopWatch neighborSW = new StopWatch(); LevelGraphStorage lg = ((LevelGraphStorage) g); while (!sortedNodes.isEmpty()) { // periodically update priorities of ALL nodes if (periodicUpdate && counter > 0 && counter % periodicUpdatesCount == 0) { periodSW.start(); sortedNodes.clear(); int len = g.getNodes(); for (int node = 0; node < len; node++) { if (g.getLevel(node) != 0) continue; int priority = oldPriorities[node] = calculatePriority(node); sortedNodes.insert(node, priority); } periodSW.stop(); updateCounter++; } if (counter % logSize == 0) { // TODO necessary? System.gc(); logger.info( Helper.nf(counter) + ", updates:" + updateCounter + ", nodes: " + Helper.nf(sortedNodes.getSize()) + ", shortcuts:" + Helper.nf(newShortcuts) + ", dijkstras:" + Helper.nf(dijkstraCount) + ", t(dijk):" + (int) dijkstraSW.getSeconds() + ", t(period):" + (int) periodSW.getSeconds() + ", t(lazy):" + (int) lazySW.getSeconds() + ", t(neighbor):" + (int) neighborSW.getSeconds() + ", meanDegree:" + (long) meanDegree + ", algo:" + algo.getMemoryUsageAsString() + ", " + Helper.getMemInfo()); dijkstraSW = new StopWatch(); periodSW = new StopWatch(); lazySW = new StopWatch(); neighborSW = new StopWatch(); } counter++; int polledNode = sortedNodes.pollKey(); if (sortedNodes.getSize() < lastNodesLazyUpdates) { lazySW.start(); int priority = oldPriorities[polledNode] = calculatePriority(polledNode); if (!sortedNodes.isEmpty() && priority > sortedNodes.peekValue()) { // current node got more important => insert as new value and contract it later sortedNodes.insert(polledNode, priority); lazySW.stop(); continue; } lazySW.stop(); } // contract! newShortcuts += addShortcuts(polledNode); g.setLevel(polledNode, level); level++; EdgeSkipIterator iter = vehicleAllExplorer.setBaseNode(polledNode); while (iter.next()) { int nn = iter.getAdjNode(); if (g.getLevel(nn) != 0) // already contracted no update necessary continue; if (neighborUpdate && rand.nextInt(100) < neighborUpdatePercentage) { neighborSW.start(); int oldPrio = oldPriorities[nn]; int priority = oldPriorities[nn] = calculatePriority(nn); if (priority != oldPrio) sortedNodes.update(nn, oldPrio, priority); neighborSW.stop(); } if (removesHigher2LowerEdges) lg.disconnect(vehicleAllTmpExplorer, iter); } } // Preparation works only once so we can release temporary data. // The preparation object itself has to be intact to create the algorithm. close(); logger.info( "took:" + (int) allSW.stop().getSeconds() + ", new shortcuts: " + newShortcuts + ", " + prepareWeighting + ", " + prepareEncoder + ", removeHigher2LowerEdges:" + removesHigher2LowerEdges + ", dijkstras:" + dijkstraCount + ", t(dijk):" + (int) dijkstraSW.getSeconds() + ", t(period):" + (int) periodSW.getSeconds() + ", t(lazy):" + (int) lazySW.getSeconds() + ", t(neighbor):" + (int) neighborSW.getSeconds() + ", meanDegree:" + (long) meanDegree + ", initSize:" + initSize + ", periodic:" + periodicUpdatesPercentage + ", lazy:" + lastNodesLazyUpdatePercentage + ", neighbor:" + neighborUpdatePercentage); }