Example #1
0
 /**
  * Before instruction s, insert code to adjust ESP so that it lies at a particular offset from its
  * usual location.
  *
  * @param s the instruction before which ESP must have the desired offset
  * @param desiredOffset the desired offset
  */
 private void moveESPBefore(Instruction s, int desiredOffset) {
   PhysicalRegisterSet phys = (PhysicalRegisterSet) ir.regpool.getPhysicalRegisterSet();
   Register ESP = phys.getESP();
   int delta = desiredOffset - ESPOffset;
   if (delta != 0) {
     if (canModifyEFLAGS(s)) {
       s.insertBefore(
           MIR_BinaryAcc.create(
               IA32_ADD,
               new RegisterOperand(ESP, PRIMITIVE_TYPE_FOR_WORD),
               VM.BuildFor32Addr ? IC(delta) : LC(delta)));
     } else {
       MemoryOperand M =
           MemoryOperand.BD(
               new RegisterOperand(ESP, PRIMITIVE_TYPE_FOR_WORD),
               Offset.fromIntSignExtend(delta),
               (byte) WORDSIZE,
               null,
               null);
       s.insertBefore(
           MIR_Lea.create(IA32_LEA, new RegisterOperand(ESP, PRIMITIVE_TYPE_FOR_WORD), M));
     }
     ESPOffset = desiredOffset;
   }
 }
Example #2
0
  /**
   * Insert an explicit stack overflow check in the prologue <em>after</em> buying the stack frame.
   *
   * <p>SIDE EFFECT: mutates the plg into a trap instruction. We need to mutate so that the trap
   * instruction is in the GC map data structures.
   *
   * @param plg the prologue instruction
   */
  private void insertNormalStackOverflowCheck(Instruction plg) {
    if (!ir.method.isInterruptible()) {
      plg.remove();
      return;
    }

    if (ir.compiledMethod.isSaveVolatile()) {
      return;
    }

    PhysicalRegisterSet phys = (PhysicalRegisterSet) ir.regpool.getPhysicalRegisterSet();
    Register ESP = phys.getESP();
    MemoryOperand M =
        MemoryOperand.BD(
            ir.regpool.makeTROp(),
            Entrypoints.stackLimitField.getOffset(),
            (byte) WORDSIZE,
            null,
            null);

    //    Trap if ESP <= active Thread Stack Limit
    MIR_TrapIf.mutate(
        plg,
        IA32_TRAPIF,
        null,
        new RegisterOperand(ESP, PRIMITIVE_TYPE_FOR_WORD),
        M,
        IA32ConditionOperand.LE(),
        TrapCodeOperand.StackOverflow());
  }
  /* generate yieldpoint without checking threadSwith request
   */
  private static void expandUnconditionalYieldpoint(Instruction s, IR ir, RVMMethod meth) {
    // split the basic block after the yieldpoint, create a new
    // block at the end of the IR to hold the yieldpoint,
    // remove the yieldpoint (to prepare to out it in the new block at the end)
    BasicBlock thisBlock = s.getBasicBlock();
    BasicBlock nextBlock = thisBlock.splitNodeWithLinksAt(s, ir);
    BasicBlock yieldpoint = thisBlock.createSubBlock(s.getBytecodeIndex(), ir);
    thisBlock.insertOut(yieldpoint);
    yieldpoint.insertOut(nextBlock);
    ir.cfg.addLastInCodeOrder(yieldpoint);
    s.remove();

    // change thread switch instruction into call to thread switch routine
    // NOTE: must make s the call instruction: it is the GC point!
    //       must also inform the GCMap that s has been moved!!!
    Offset offset = meth.getOffset();
    LocationOperand loc = new LocationOperand(offset);
    Operand guard = TG();
    Operand target = MemoryOperand.D(Magic.getTocPointer().plus(offset), (byte) 4, loc, guard);
    MIR_Call.mutate0(s, CALL_SAVE_VOLATILE, null, null, target, MethodOperand.STATIC(meth));
    yieldpoint.appendInstruction(s);
    ir.MIRInfo.gcIRMap.moveToEnd(s);

    yieldpoint.appendInstruction(MIR_Branch.create(IA32_JMP, nextBlock.makeJumpTarget()));

    // make a jump to yield block
    thisBlock.appendInstruction(MIR_Branch.create(IA32_JMP, yieldpoint.makeJumpTarget()));
  }
  private static void expandYieldpoint(
      Instruction s, IR ir, RVMMethod meth, IA32ConditionOperand ypCond) {
    // split the basic block after the yieldpoint, create a new
    // block at the end of the IR to hold the yieldpoint,
    // remove the yieldpoint (to prepare to out it in the new block at the end)
    BasicBlock thisBlock = s.getBasicBlock();
    BasicBlock nextBlock = thisBlock.splitNodeWithLinksAt(s, ir);
    BasicBlock yieldpoint = thisBlock.createSubBlock(s.getBytecodeIndex(), ir, 0);
    thisBlock.insertOut(yieldpoint);
    yieldpoint.insertOut(nextBlock);
    ir.cfg.addLastInCodeOrder(yieldpoint);
    s.remove();

    // change thread switch instruction into call to thread switch routine
    // NOTE: must make s the call instruction: it is the GC point!
    //       must also inform the GCMap that s has been moved!!!
    Offset offset = meth.getOffset();
    LocationOperand loc = new LocationOperand(offset);
    Operand guard = TG();
    Operand target;
    if (JTOC_REGISTER == null) {
      target = MemoryOperand.D(Magic.getTocPointer().plus(offset), (byte) 4, loc, guard);
    } else {
      target = MemoryOperand.BD(ir.regpool.makeTocOp().asRegister(), offset, (byte) 8, loc, guard);
    }

    MIR_Call.mutate0(s, CALL_SAVE_VOLATILE, null, null, target, MethodOperand.STATIC(meth));
    yieldpoint.appendInstruction(s);
    ir.MIRInfo.gcIRMap.moveToEnd(s);

    yieldpoint.appendInstruction(MIR_Branch.create(IA32_JMP, nextBlock.makeJumpTarget()));

    // Check to see if threadSwitch requested
    Offset tsr = Entrypoints.takeYieldpointField.getOffset();
    MemoryOperand M = MemoryOperand.BD(ir.regpool.makeTROp(), tsr, (byte) 4, null, null);
    thisBlock.appendInstruction(MIR_Compare.create(IA32_CMP, M, IC(0)));
    thisBlock.appendInstruction(
        MIR_CondBranch.create(
            IA32_JCC, ypCond, yieldpoint.makeJumpTarget(), BranchProfileOperand.never()));
  }
Example #5
0
  /**
   * Insert an explicit stack overflow check in the prologue <em>before</em> buying the stack frame.
   * SIDE EFFECT: mutates the plg into a trap instruction. We need to mutate so that the trap
   * instruction is in the GC map data structures.
   *
   * @param plg the prologue instruction
   */
  private void insertBigFrameStackOverflowCheck(Instruction plg) {
    if (!ir.method.isInterruptible()) {
      plg.remove();
      return;
    }

    if (ir.compiledMethod.isSaveVolatile()) {
      return;
    }

    PhysicalRegisterSet phys = (PhysicalRegisterSet) ir.regpool.getPhysicalRegisterSet();
    Register ESP = phys.getESP();
    Register ECX = phys.getECX();

    //    ECX := active Thread Stack Limit
    MemoryOperand M =
        MemoryOperand.BD(
            ir.regpool.makeTROp(),
            Entrypoints.stackLimitField.getOffset(),
            (byte) WORDSIZE,
            null,
            null);
    plg.insertBefore(
        MIR_Move.create(IA32_MOV, new RegisterOperand((ECX), PRIMITIVE_TYPE_FOR_WORD), M));

    //    ECX += frame Size
    int frameSize = getFrameFixedSize();
    plg.insertBefore(
        MIR_BinaryAcc.create(
            IA32_ADD,
            new RegisterOperand(ECX, PRIMITIVE_TYPE_FOR_WORD),
            VM.BuildFor32Addr ? IC(frameSize) : LC(frameSize)));
    //    Trap if ESP <= ECX
    MIR_TrapIf.mutate(
        plg,
        IA32_TRAPIF,
        null,
        new RegisterOperand(ESP, PRIMITIVE_TYPE_FOR_WORD),
        new RegisterOperand(ECX, PRIMITIVE_TYPE_FOR_WORD),
        IA32ConditionOperand.LE(),
        TrapCodeOperand.StackOverflow());
  }
Example #6
0
  /**
   * Insert the epilogue before a particular return instruction.
   *
   * @param ret the return instruction.
   */
  private void insertEpilogue(Instruction ret) {
    // 1. Restore any saved registers
    if (ir.compiledMethod.isSaveVolatile()) {
      restoreVolatileRegisters(ret);
      restoreFloatingPointState(ret);
    }
    restoreNonVolatiles(ret);

    // 2. Restore caller's stackpointer and framepointer
    int frameSize = getFrameFixedSize();
    ret.insertBefore(MIR_UnaryNoRes.create(REQUIRE_ESP, IC(frameSize)));
    MemoryOperand fpHome =
        MemoryOperand.BD(
            ir.regpool.makeTROp(),
            ArchEntrypoints.framePointerField.getOffset(),
            (byte) WORDSIZE,
            null,
            null);
    ret.insertBefore(MIR_Nullary.create(IA32_POP, fpHome));
  }
Example #7
0
  /**
   * Walks through the IR. For each StackLocationOperand, replace the operand with the appropriate
   * MemoryOperand.
   */
  private void rewriteStackLocations() {
    // ESP is initially WORDSIZE above where the framepointer is going to be.
    ESPOffset = getFrameFixedSize() + WORDSIZE;
    Register ESP = ((PhysicalRegisterSet) ir.regpool.getPhysicalRegisterSet()).getESP();

    boolean seenReturn = false;
    for (Enumeration<Instruction> e = ir.forwardInstrEnumerator(); e.hasMoreElements(); ) {
      Instruction s = e.nextElement();

      if (s.isReturn()) {
        seenReturn = true;
        continue;
      }

      if (s.isBranch()) {
        // restore ESP to home location at end of basic block.
        moveESPBefore(s, 0);
        continue;
      }

      if (s.operator() == BBEND) {
        if (seenReturn) {
          // at a return ESP will be at FrameFixedSize,
          seenReturn = false;
          ESPOffset = 0;
        } else {
          moveESPBefore(s, 0);
        }
        continue;
      }

      if (s.operator() == ADVISE_ESP) {
        ESPOffset = MIR_UnaryNoRes.getVal(s).asIntConstant().value;
        continue;
      }

      if (s.operator() == REQUIRE_ESP) {
        // ESP is required to be at the given offset from the bottom of the frame
        moveESPBefore(s, MIR_UnaryNoRes.getVal(s).asIntConstant().value);
        continue;
      }

      if (s.operator() == YIELDPOINT_PROLOGUE
          || s.operator() == YIELDPOINT_BACKEDGE
          || s.operator() == YIELDPOINT_EPILOGUE) {
        moveESPBefore(s, 0);
        continue;
      }

      if (s.operator() == IA32_MOV) {
        rewriteMoveInstruction(s);
      }

      // pop computes the effective address of its operand after ESP
      // is incremented.  Therefore update ESPOffset before rewriting
      // stacklocation and memory operands.
      if (s.operator() == IA32_POP) {
        ESPOffset += WORDSIZE;
      }

      for (Enumeration<Operand> ops = s.getOperands(); ops.hasMoreElements(); ) {
        Operand op = ops.nextElement();
        if (op instanceof StackLocationOperand) {
          StackLocationOperand sop = (StackLocationOperand) op;
          int offset = sop.getOffset();
          if (sop.isFromTop()) {
            offset = FPOffset2SPOffset(offset);
          }
          offset -= ESPOffset;
          byte size = sop.getSize();
          MemoryOperand M =
              MemoryOperand.BD(
                  new RegisterOperand(ESP, PRIMITIVE_TYPE_FOR_WORD),
                  Offset.fromIntSignExtend(offset),
                  size,
                  null,
                  null);
          s.replaceOperand(op, M);
        } else if (op instanceof MemoryOperand) {
          MemoryOperand M = op.asMemory();
          if ((M.base != null && M.base.getRegister() == ESP)
              || (M.index != null && M.index.getRegister() == ESP)) {
            M.disp = M.disp.minus(ESPOffset);
          }
        }
      }

      // push computes the effective address of its operand after ESP
      // is decremented.  Therefore update ESPOffset after rewriting
      // stacklocation and memory operands.
      if (s.operator() == IA32_PUSH) {
        ESPOffset -= WORDSIZE;
      }
    }
  }
Example #8
0
  /**
   * Insert the prologue for a normal method.
   *
   * <p>Assume we are inserting the prologue for method B called from method A.
   *
   * <ul>
   *   <li>Perform a stack overflow check.
   *   <li>Store a back pointer to A's frame
   *   <li>Store B's compiled method id
   *   <li>Adjust frame pointer to point to B's frame
   *   <li>Save any used non-volatile registers
   * </ul>
   */
  @Override
  public void insertNormalPrologue() {
    PhysicalRegisterSet phys = (PhysicalRegisterSet) ir.regpool.getPhysicalRegisterSet();
    Register ESP = phys.getESP();
    MemoryOperand fpHome =
        MemoryOperand.BD(
            ir.regpool.makeTROp(),
            ArchEntrypoints.framePointerField.getOffset(),
            (byte) WORDSIZE,
            null,
            null);

    // the prologue instruction
    Instruction plg = ir.firstInstructionInCodeOrder().nextInstructionInCodeOrder();
    // inst is the instruction immediately after the IR_PROLOGUE
    // instruction
    Instruction inst = plg.nextInstructionInCodeOrder();

    int frameFixedSize = getFrameFixedSize();
    ir.compiledMethod.setFrameFixedSize(frameFixedSize);

    // I. Buy a stackframe (including overflow check)
    // NOTE: We play a little game here.  If the frame we are buying is
    //       very small (less than 256) then we can be sloppy with the
    //       stackoverflow check and actually allocate the frame in the guard
    //       region.  We'll notice when this frame calls someone and take the
    //       stackoverflow in the callee. We can't do this if the frame is too big,
    //       because growing the stack in the callee and/or handling a hardware trap
    //       in this frame will require most of the guard region to complete.
    //       See libvm.C.
    if (frameFixedSize >= 256) {
      // 1. Insert Stack overflow check.
      insertBigFrameStackOverflowCheck(plg);

      // 2. Save caller's frame pointer
      inst.insertBefore(MIR_UnaryNoRes.create(IA32_PUSH, fpHome));

      // 3. Set my frame pointer to current value of stackpointer
      inst.insertBefore(
          MIR_Move.create(
              IA32_MOV, fpHome.copy(), new RegisterOperand(ESP, PRIMITIVE_TYPE_FOR_WORD)));

      // 4. Store my compiled method id
      int cmid = ir.compiledMethod.getId();
      inst.insertBefore(MIR_UnaryNoRes.create(IA32_PUSH, VM.BuildFor32Addr ? IC(cmid) : LC(cmid)));
    } else {
      // 1. Save caller's frame pointer
      inst.insertBefore(MIR_UnaryNoRes.create(IA32_PUSH, fpHome));

      // 2. Set my frame pointer to current value of stackpointer
      inst.insertBefore(
          MIR_Move.create(
              IA32_MOV, fpHome.copy(), new RegisterOperand(ESP, PRIMITIVE_TYPE_FOR_WORD)));

      // 3. Store my compiled method id
      int cmid = ir.compiledMethod.getId();
      inst.insertBefore(MIR_UnaryNoRes.create(IA32_PUSH, VM.BuildFor32Addr ? IC(cmid) : LC(cmid)));

      // 4. Insert Stack overflow check.
      insertNormalStackOverflowCheck(plg);
    }

    // II. Save any used volatile and non-volatile registers
    if (ir.compiledMethod.isSaveVolatile()) {
      saveVolatiles(inst);
      saveFloatingPointState(inst);
    }
    saveNonVolatiles(inst);
  }
  /**
   * @param ir the IR to expand
   * @return return value is garbage for IA32
   */
  public static int expand(IR ir) {
    PhysicalRegisterSet phys = ir.regpool.getPhysicalRegisterSet().asIA32();
    MachineCodeOffsets mcOffsets = ir.MIRInfo.mcOffsets;

    for (Instruction next, p = ir.firstInstructionInCodeOrder(); p != null; p = next) {
      next = p.nextInstructionInCodeOrder();
      mcOffsets.setMachineCodeOffset(p, -1);

      switch (p.getOpcode()) {
        case IA32_MOVAPS_opcode:
          // a reg-reg move turned into a memory move where we can't guarantee alignment
          if (MIR_Move.getResult(p).isMemory() || MIR_Move.getValue(p).isMemory()) {
            MIR_Move.mutate(p, IA32_MOVSS, MIR_Move.getClearResult(p), MIR_Move.getClearValue(p));
          }
          break;

        case IA32_MOVAPD_opcode:
          // a reg-reg move turned into a memory move where we can't guarantee alignment
          if (MIR_Move.getResult(p).isMemory() || MIR_Move.getValue(p).isMemory()) {
            MIR_Move.mutate(p, IA32_MOVSD, MIR_Move.getClearResult(p), MIR_Move.getClearValue(p));
          }
          break;

        case IA32_TEST_opcode:
          // don't bother telling rest of compiler that memory operand
          // must be first; we can just commute it here.
          if (MIR_Test.getVal2(p).isMemory()) {
            Operand tmp = MIR_Test.getClearVal1(p);
            MIR_Test.setVal1(p, MIR_Test.getClearVal2(p));
            MIR_Test.setVal2(p, tmp);
          }
          break;

        case NULL_CHECK_opcode:
          {
            // mutate this into a TRAPIF, and then fall through to the the
            // TRAP_IF case.
            Operand ref = NullCheck.getRef(p);
            MIR_TrapIf.mutate(
                p,
                IA32_TRAPIF,
                null,
                ref.copy(),
                IC(0),
                IA32ConditionOperand.EQ(),
                TrapCodeOperand.NullPtr());
          }
          // There is no break statement here on purpose!
        case IA32_TRAPIF_opcode:
          {
            // split the basic block right before the IA32_TRAPIF
            BasicBlock thisBlock = p.getBasicBlock();
            BasicBlock trap = thisBlock.createSubBlock(p.getBytecodeIndex(), ir, 0f);
            thisBlock.insertOut(trap);
            BasicBlock nextBlock = thisBlock.splitNodeWithLinksAt(p, ir);
            thisBlock.insertOut(trap);
            TrapCodeOperand tc = MIR_TrapIf.getClearTrapCode(p);
            p.remove();
            mcOffsets.setMachineCodeOffset(nextBlock.firstInstruction(), -1);
            // add code to thisBlock to conditionally jump to trap
            Instruction cmp =
                MIR_Compare.create(IA32_CMP, MIR_TrapIf.getVal1(p), MIR_TrapIf.getVal2(p));
            if (p.isMarkedAsPEI()) {
              // The trap if was explictly marked, which means that it has
              // a memory operand into which we've folded a null check.
              // Actually need a GC map for both the compare and the INT.
              cmp.markAsPEI();
              cmp.copyPosition(p);
              ir.MIRInfo.gcIRMap.insertTwin(p, cmp);
            }
            thisBlock.appendInstruction(cmp);
            thisBlock.appendInstruction(
                MIR_CondBranch.create(
                    IA32_JCC, MIR_TrapIf.getCond(p), trap.makeJumpTarget(), null));

            // add block at end to hold trap instruction, and
            // insert trap sequence
            ir.cfg.addLastInCodeOrder(trap);
            if (tc.isArrayBounds()) {
              // attempt to store index expression in processor object for
              // C trap handler
              Operand index = MIR_TrapIf.getVal2(p);
              if (!(index instanceof RegisterOperand || index instanceof IntConstantOperand)) {
                index = IC(0xdeadbeef); // index was spilled, and
                // we can't get it back here.
              }
              MemoryOperand mo =
                  MemoryOperand.BD(
                      ir.regpool.makeTROp(),
                      ArchEntrypoints.arrayIndexTrapParamField.getOffset(),
                      (byte) 4,
                      null,
                      null);
              trap.appendInstruction(MIR_Move.create(IA32_MOV, mo, index.copy()));
            }
            // NOTE: must make p the trap instruction: it is the GC point!
            // IMPORTANT: must also inform the GCMap that the instruction has
            // been moved!!!
            trap.appendInstruction(MIR_Trap.mutate(p, IA32_INT, null, tc));
            ir.MIRInfo.gcIRMap.moveToEnd(p);

            if (tc.isStackOverflow()) {
              // only stackoverflow traps resume at next instruction.
              trap.appendInstruction(MIR_Branch.create(IA32_JMP, nextBlock.makeJumpTarget()));
            }
          }
          break;

        case IA32_FMOV_ENDING_LIVE_RANGE_opcode:
          {
            Operand result = MIR_Move.getResult(p);
            Operand value = MIR_Move.getValue(p);
            if (result.isRegister() && value.isRegister()) {
              if (result.similar(value)) {
                // eliminate useless move
                p.remove();
              } else {
                int i = PhysicalRegisterSet.getFPRIndex(result.asRegister().getRegister());
                int j = PhysicalRegisterSet.getFPRIndex(value.asRegister().getRegister());
                if (i == 0) {
                  MIR_XChng.mutate(p, IA32_FXCH, result, value);
                } else if (j == 0) {
                  MIR_XChng.mutate(p, IA32_FXCH, value, result);
                } else {
                  expandFmov(p, phys);
                }
              }
            } else {
              expandFmov(p, phys);
            }
            break;
          }

        case DUMMY_DEF_opcode:
        case DUMMY_USE_opcode:
        case REQUIRE_ESP_opcode:
        case ADVISE_ESP_opcode:
          p.remove();
          break;

        case IA32_FMOV_opcode:
          expandFmov(p, phys);
          break;

        case IA32_MOV_opcode:
          // Replace result = IA32_MOV 0 with result = IA32_XOR result, result
          if (MIR_Move.getResult(p).isRegister()
              && MIR_Move.getValue(p).isIntConstant()
              && MIR_Move.getValue(p).asIntConstant().value == 0) {
            // Calculate what flags are defined in coming instructions before a use of a flag or
            // BBend
            Instruction x = next;
            int futureDefs = 0;
            while (!BBend.conforms(x) && !PhysicalDefUse.usesEFLAGS(x.operator())) {
              futureDefs |= x.operator().implicitDefs;
              x = x.nextInstructionInCodeOrder();
            }
            // If the flags will be destroyed prior to use or we reached the end of the basic block
            if (BBend.conforms(x)
                || (futureDefs & PhysicalDefUse.maskAF_CF_OF_PF_SF_ZF)
                    == PhysicalDefUse.maskAF_CF_OF_PF_SF_ZF) {
              Operand result = MIR_Move.getClearResult(p);
              MIR_BinaryAcc.mutate(p, IA32_XOR, result, result.copy());
            }
          }
          break;

        case IA32_SET__B_opcode:
          // Replace <cmp>, set__b, movzx__b with xor, <cmp>, set__b
          if (MIR_Set.getResult(p).isRegister()
              && MIR_Unary.conforms(next)
              && (next.operator() == IA32_MOVZX__B)
              && MIR_Unary.getResult(next).isRegister()
              && MIR_Unary.getVal(next).similar(MIR_Unary.getResult(next))
              && MIR_Unary.getVal(next).similar(MIR_Set.getResult(p))) {
            // Find instruction in this basic block that defines flags
            Instruction x = p.prevInstructionInCodeOrder();
            Operand result = MIR_Unary.getResult(next);
            boolean foundCmp = false;
            outer:
            while (!Label.conforms(x)) {
              Enumeration<Operand> e = x.getUses();
              while (e.hasMoreElements()) {
                // We can't use an xor to clear the register if that register is
                // used by the <cmp> or intervening instruction
                if (e.nextElement().similar(result)) {
                  break outer;
                }
              }
              if (PhysicalDefUse.definesEFLAGS(x.operator())
                  && !PhysicalDefUse.usesEFLAGS(x.operator())) {
                // we found a <cmp> that doesn't use the result or the flags
                // that would be clobbered by the xor
                foundCmp = true;
                break outer;
              }
              x = x.prevInstructionInCodeOrder();
            }
            if (foundCmp) {
              // We found the <cmp>, mutate the movzx__b into an xor and insert it before the <cmp>
              next.remove();
              MIR_BinaryAcc.mutate(next, IA32_XOR, result, MIR_Unary.getVal(next));
              x.insertBefore(next);
              // get ready for the next instruction
              next = p.nextInstructionInCodeOrder();
            }
          }
          break;

        case IA32_LEA_opcode:
          {
            // Sometimes we're over eager in BURS in using LEAs and after register
            // allocation we can simplify to the accumulate form
            // replace reg1 = LEA [reg1 + reg2] with reg1 = reg1 + reg2
            // replace reg1 = LEA [reg1 + c1] with reg1 = reg1 + c1
            // replace reg1 = LEA [reg1 << c1] with reg1 = reg1 << c1
            MemoryOperand value = MIR_Lea.getValue(p);
            RegisterOperand result = MIR_Lea.getResult(p);
            if ((value.base != null && value.base.getRegister() == result.getRegister())
                || (value.index != null && value.index.getRegister() == result.getRegister())) {
              // Calculate what flags are defined in coming instructions before a use of a flag or
              // BBend
              Instruction x = next;
              int futureDefs = 0;
              while (!BBend.conforms(x) && !PhysicalDefUse.usesEFLAGS(x.operator())) {
                futureDefs |= x.operator().implicitDefs;
                x = x.nextInstructionInCodeOrder();
              }
              // If the flags will be destroyed prior to use or we reached the end of the basic
              // block
              if (BBend.conforms(x)
                  || (futureDefs & PhysicalDefUse.maskAF_CF_OF_PF_SF_ZF)
                      == PhysicalDefUse.maskAF_CF_OF_PF_SF_ZF) {
                if (value.base != null
                    && value.index != null
                    && value.index.getRegister() == result.getRegister()
                    && value.disp.isZero()
                    && value.scale == 0) {
                  // reg1 = lea [base + reg1] -> add reg1, base
                  MIR_BinaryAcc.mutate(p, IA32_ADD, result, value.base);
                } else if (value.base != null
                    && value.base.getRegister() == result.getRegister()
                    && value.index != null
                    && value.disp.isZero()
                    && value.scale == 0) {
                  // reg1 = lea [reg1 + index] -> add reg1, index
                  MIR_BinaryAcc.mutate(p, IA32_ADD, result, value.index);
                } else if (value.base != null
                    && value.base.getRegister() == result.getRegister()
                    && value.index == null) {
                  if (VM.VerifyAssertions) VM._assert(fits(value.disp, 32));
                  // reg1 = lea [reg1 + disp] -> add reg1, disp
                  MIR_BinaryAcc.mutate(p, IA32_ADD, result, IC(value.disp.toInt()));
                } else if (value.base == null
                    && value.index != null
                    && value.index.getRegister() == result.getRegister()
                    && value.scale == 0) {
                  if (VM.VerifyAssertions) VM._assert(fits(value.disp, 32));
                  // reg1 = lea [reg1 + disp] -> add reg1, disp
                  MIR_BinaryAcc.mutate(p, IA32_ADD, result, IC(value.disp.toInt()));
                } else if (value.base == null
                    && value.index != null
                    && value.index.getRegister() == result.getRegister()
                    && value.disp.isZero()) {
                  // reg1 = lea [reg1 << scale] -> shl reg1, scale
                  if (value.scale == 0) {
                    p.remove();
                  } else if (value.scale == 1) {
                    MIR_BinaryAcc.mutate(p, IA32_ADD, result, value.index);
                  } else {
                    MIR_BinaryAcc.mutate(p, IA32_SHL, result, IC(value.scale));
                  }
                }
              }
            }
          }
          break;

        case IA32_FCLEAR_opcode:
          expandFClear(p, ir);
          break;

        case IA32_JCC2_opcode:
          p.insertBefore(
              MIR_CondBranch.create(
                  IA32_JCC,
                  MIR_CondBranch2.getCond1(p),
                  MIR_CondBranch2.getTarget1(p),
                  MIR_CondBranch2.getBranchProfile1(p)));
          MIR_CondBranch.mutate(
              p,
              IA32_JCC,
              MIR_CondBranch2.getCond2(p),
              MIR_CondBranch2.getTarget2(p),
              MIR_CondBranch2.getBranchProfile2(p));
          break;

        case CALL_SAVE_VOLATILE_opcode:
          p.changeOperatorTo(IA32_CALL);
          break;

        case IA32_LOCK_CMPXCHG_opcode:
          p.insertBefore(MIR_Empty.create(IA32_LOCK));
          p.changeOperatorTo(IA32_CMPXCHG);
          break;

        case IA32_LOCK_CMPXCHG8B_opcode:
          p.insertBefore(MIR_Empty.create(IA32_LOCK));
          p.changeOperatorTo(IA32_CMPXCHG8B);
          break;

        case YIELDPOINT_PROLOGUE_opcode:
          expandYieldpoint(
              p, ir, Entrypoints.optThreadSwitchFromPrologueMethod, IA32ConditionOperand.NE());
          break;

        case YIELDPOINT_EPILOGUE_opcode:
          expandYieldpoint(
              p, ir, Entrypoints.optThreadSwitchFromEpilogueMethod, IA32ConditionOperand.NE());
          break;

        case YIELDPOINT_BACKEDGE_opcode:
          expandYieldpoint(
              p, ir, Entrypoints.optThreadSwitchFromBackedgeMethod, IA32ConditionOperand.GT());
          break;

        case YIELDPOINT_OSR_opcode:
          // must yield, does not check threadSwitch request
          expandUnconditionalYieldpoint(p, ir, Entrypoints.optThreadSwitchFromOsrOptMethod);
          break;
      }
    }
    return 0;
  }