/** * GetKs - return [K_1,K_2,...,K_L] where each Y_j \in {1,...,K_j}. In the multi-label case, K[j] * = 2 for all j = 1,...,L. * * @param D a dataset * @return an array of the number of values that each label can take */ private static int[] getKs(Instances D) { int L = D.classIndex(); int K[] = new int[L]; for (int k = 0; k < L; k++) { K[k] = D.attribute(k).numValues(); } return K; }
/** * loads the given dataset and prints the Capabilities necessary to process it. * * <p>Valid parameters: * * <p>-file filename <br> * the file to load * * <p>-c index the explicit index of the class attribute (default: none) * * @param args the commandline arguments * @throws Exception if something goes wrong */ public static void main(String[] args) throws Exception { String tmpStr; String filename; DataSource source; Instances data; int classIndex; Capabilities cap; Iterator iter; if (args.length == 0) { System.out.println( "\nUsage: " + Capabilities.class.getName() + " -file <dataset> [-c <class index>]\n"); return; } // get parameters tmpStr = Utils.getOption("file", args); if (tmpStr.length() == 0) throw new Exception("No file provided with option '-file'!"); else filename = tmpStr; tmpStr = Utils.getOption("c", args); if (tmpStr.length() != 0) { if (tmpStr.equals("first")) classIndex = 0; else if (tmpStr.equals("last")) classIndex = -2; // last else classIndex = Integer.parseInt(tmpStr) - 1; } else { classIndex = -3; // not set } // load data source = new DataSource(filename); if (classIndex == -3) data = source.getDataSet(); else if (classIndex == -2) data = source.getDataSet(source.getStructure().numAttributes() - 1); else data = source.getDataSet(classIndex); // determine and print capabilities cap = forInstances(data); System.out.println("File: " + filename); System.out.println( "Class index: " + ((data.classIndex() == -1) ? "not set" : "" + (data.classIndex() + 1))); System.out.println("Capabilities:"); iter = cap.capabilities(); while (iter.hasNext()) System.out.println("- " + iter.next()); }
/** * Calculates the distance between two instances * * @param test the first instance * @param train the second instance * @return the distance between the two given instances, between 0 and 1 */ protected double distance(Instance first, Instance second) { double distance = 0; int firstI, secondI; for (int p1 = 0, p2 = 0; p1 < first.numValues() || p2 < second.numValues(); ) { if (p1 >= first.numValues()) { firstI = m_instances.numAttributes(); } else { firstI = first.index(p1); } if (p2 >= second.numValues()) { secondI = m_instances.numAttributes(); } else { secondI = second.index(p2); } if (firstI == m_instances.classIndex()) { p1++; continue; } if (secondI == m_instances.classIndex()) { p2++; continue; } double diff; if (firstI == secondI) { diff = difference(firstI, first.valueSparse(p1), second.valueSparse(p2)); p1++; p2++; } else if (firstI > secondI) { diff = difference(secondI, 0, second.valueSparse(p2)); p2++; } else { diff = difference(firstI, first.valueSparse(p1), 0); p1++; } distance += diff * diff; } return Math.sqrt(distance / m_instances.numAttributes()); }
/** * Tests a certain range of attributes of the given data, whether it can be processed by the * handler, given its capabilities. Classifiers implementing the <code> * MultiInstanceCapabilitiesHandler</code> interface are checked automatically for their * multi-instance Capabilities (if no bags, then only the bag-structure, otherwise only the first * bag). * * @param data the data to test * @param fromIndex the range of attributes - start (incl.) * @param toIndex the range of attributes - end (incl.) * @return true if all the tests succeeded * @see MultiInstanceCapabilitiesHandler * @see #m_InstancesTest * @see #m_MissingValuesTest * @see #m_MissingClassValuesTest * @see #m_MinimumNumberInstancesTest */ public boolean test(Instances data, int fromIndex, int toIndex) { int i; int n; int m; Attribute att; Instance inst; boolean testClass; Capabilities cap; boolean missing; Iterator iter; // shall we test the data? if (!m_InstancesTest) return true; // no Capabilities? -> warning if ((m_Capabilities.size() == 0) || ((m_Capabilities.size() == 1) && handles(Capability.NO_CLASS))) System.err.println(createMessage("No capabilities set!")); // any attributes? if (toIndex - fromIndex < 0) { m_FailReason = new WekaException(createMessage("No attributes!")); return false; } // do wee need to test the class attribute, i.e., is the class attribute // within the range of attributes? testClass = (data.classIndex() > -1) && (data.classIndex() >= fromIndex) && (data.classIndex() <= toIndex); // attributes for (i = fromIndex; i <= toIndex; i++) { att = data.attribute(i); // class is handled separately if (i == data.classIndex()) continue; // check attribute types if (!test(att)) return false; } // class if (!handles(Capability.NO_CLASS) && (data.classIndex() == -1)) { m_FailReason = new UnassignedClassException(createMessage("Class attribute not set!")); return false; } // special case: no class attribute can be handled if (handles(Capability.NO_CLASS) && (data.classIndex() > -1)) { cap = getClassCapabilities(); cap.disable(Capability.NO_CLASS); iter = cap.capabilities(); if (!iter.hasNext()) { m_FailReason = new WekaException(createMessage("Cannot handle any class attribute!")); return false; } } if (testClass && !handles(Capability.NO_CLASS)) { att = data.classAttribute(); if (!test(att, true)) return false; // special handling of RELATIONAL class // TODO: store additional Capabilities for this case // missing class labels if (m_MissingClassValuesTest) { if (!handles(Capability.MISSING_CLASS_VALUES)) { for (i = 0; i < data.numInstances(); i++) { if (data.instance(i).classIsMissing()) { m_FailReason = new WekaException(createMessage("Cannot handle missing class values!")); return false; } } } else { if (m_MinimumNumberInstancesTest) { int hasClass = 0; for (i = 0; i < data.numInstances(); i++) { if (!data.instance(i).classIsMissing()) hasClass++; } // not enough instances with class labels? if (hasClass < getMinimumNumberInstances()) { m_FailReason = new WekaException( createMessage( "Not enough training instances with class labels (required: " + getMinimumNumberInstances() + ", provided: " + hasClass + ")!")); return false; } } } } } // missing values if (m_MissingValuesTest) { if (!handles(Capability.MISSING_VALUES)) { missing = false; for (i = 0; i < data.numInstances(); i++) { inst = data.instance(i); if (inst instanceof SparseInstance) { for (m = 0; m < inst.numValues(); m++) { n = inst.index(m); // out of scope? if (n < fromIndex) continue; if (n > toIndex) break; // skip class if (n == inst.classIndex()) continue; if (inst.isMissing(n)) { missing = true; break; } } } else { for (n = fromIndex; n <= toIndex; n++) { // skip class if (n == inst.classIndex()) continue; if (inst.isMissing(n)) { missing = true; break; } } } if (missing) { m_FailReason = new NoSupportForMissingValuesException( createMessage("Cannot handle missing values!")); return false; } } } } // instances if (m_MinimumNumberInstancesTest) { if (data.numInstances() < getMinimumNumberInstances()) { m_FailReason = new WekaException( createMessage( "Not enough training instances (required: " + getMinimumNumberInstances() + ", provided: " + data.numInstances() + ")!")); return false; } } // Multi-Instance? -> check structure (regardless of attribute range!) if (handles(Capability.ONLY_MULTIINSTANCE)) { // number of attributes? if (data.numAttributes() != 3) { m_FailReason = new WekaException( createMessage("Incorrect Multi-Instance format, must be 'bag-id, bag, class'!")); return false; } // type of attributes and position of class? if (!data.attribute(0).isNominal() || !data.attribute(1).isRelationValued() || (data.classIndex() != data.numAttributes() - 1)) { m_FailReason = new WekaException( createMessage( "Incorrect Multi-Instance format, must be 'NOMINAL att, RELATIONAL att, CLASS att'!")); return false; } // check data immediately if (getOwner() instanceof MultiInstanceCapabilitiesHandler) { MultiInstanceCapabilitiesHandler handler = (MultiInstanceCapabilitiesHandler) getOwner(); cap = handler.getMultiInstanceCapabilities(); boolean result; if (data.numInstances() > 0) result = cap.test(data.attribute(1).relation(0)); else result = cap.test(data.attribute(1).relation()); if (!result) { m_FailReason = cap.m_FailReason; return false; } } } // passed all tests! return true; }
/** * returns a Capabilities object specific for this data. The minimum number of instances is not * set, the check for multi-instance data is optional. * * @param data the data to base the capabilities on * @param multi if true then the structure is checked, too * @return a data-specific capabilities object * @throws Exception in case an error occurrs, e.g., an unknown attribute type */ public static Capabilities forInstances(Instances data, boolean multi) throws Exception { Capabilities result; Capabilities multiInstance; int i; int n; int m; Instance inst; boolean missing; result = new Capabilities(null); // class if (data.classIndex() == -1) { result.enable(Capability.NO_CLASS); } else { switch (data.classAttribute().type()) { case Attribute.NOMINAL: if (data.classAttribute().numValues() == 1) result.enable(Capability.UNARY_CLASS); else if (data.classAttribute().numValues() == 2) result.enable(Capability.BINARY_CLASS); else result.enable(Capability.NOMINAL_CLASS); break; case Attribute.NUMERIC: result.enable(Capability.NUMERIC_CLASS); break; case Attribute.STRING: result.enable(Capability.STRING_CLASS); break; case Attribute.DATE: result.enable(Capability.DATE_CLASS); break; case Attribute.RELATIONAL: result.enable(Capability.RELATIONAL_CLASS); break; default: throw new UnsupportedAttributeTypeException( "Unknown class attribute type '" + data.classAttribute() + "'!"); } // missing class values for (i = 0; i < data.numInstances(); i++) { if (data.instance(i).classIsMissing()) { result.enable(Capability.MISSING_CLASS_VALUES); break; } } } // attributes for (i = 0; i < data.numAttributes(); i++) { // skip class if (i == data.classIndex()) continue; switch (data.attribute(i).type()) { case Attribute.NOMINAL: result.enable(Capability.UNARY_ATTRIBUTES); if (data.attribute(i).numValues() == 2) result.enable(Capability.BINARY_ATTRIBUTES); else if (data.attribute(i).numValues() > 2) result.enable(Capability.NOMINAL_ATTRIBUTES); break; case Attribute.NUMERIC: result.enable(Capability.NUMERIC_ATTRIBUTES); break; case Attribute.DATE: result.enable(Capability.DATE_ATTRIBUTES); break; case Attribute.STRING: result.enable(Capability.STRING_ATTRIBUTES); break; case Attribute.RELATIONAL: result.enable(Capability.RELATIONAL_ATTRIBUTES); break; default: throw new UnsupportedAttributeTypeException( "Unknown attribute type '" + data.attribute(i).type() + "'!"); } } // missing values missing = false; for (i = 0; i < data.numInstances(); i++) { inst = data.instance(i); if (inst instanceof SparseInstance) { for (m = 0; m < inst.numValues(); m++) { n = inst.index(m); // skip class if (n == inst.classIndex()) continue; if (inst.isMissing(n)) { missing = true; break; } } } else { for (n = 0; n < data.numAttributes(); n++) { // skip class if (n == inst.classIndex()) continue; if (inst.isMissing(n)) { missing = true; break; } } } if (missing) { result.enable(Capability.MISSING_VALUES); break; } } // multi-instance data? if (multi) { if ((data.numAttributes() == 3) && (data.attribute(0).isNominal()) // bag-id && (data.attribute(1).isRelationValued()) // bag && (data.classIndex() == data.numAttributes() - 1)) { multiInstance = new Capabilities(null); multiInstance.or(result.getClassCapabilities()); multiInstance.enable(Capability.NOMINAL_ATTRIBUTES); multiInstance.enable(Capability.RELATIONAL_ATTRIBUTES); multiInstance.enable(Capability.ONLY_MULTIINSTANCE); result.assign(multiInstance); } } return result; }
/** * Evaluates a feature subset by cross validation * * @param feature_set the subset to be evaluated * @param num_atts the number of attributes in the subset * @return the estimated accuracy * @throws Exception if subset can't be evaluated */ protected double estimatePerformance(BitSet feature_set, int num_atts) throws Exception { m_evaluation = new Evaluation(m_theInstances); int i; int[] fs = new int[num_atts]; double[] instA = new double[num_atts]; int classI = m_theInstances.classIndex(); int index = 0; for (i = 0; i < m_numAttributes; i++) { if (feature_set.get(i)) { fs[index++] = i; } } // create new hash table m_entries = new Hashtable((int) (m_theInstances.numInstances() * 1.5)); // insert instances into the hash table for (i = 0; i < m_numInstances; i++) { Instance inst = m_theInstances.instance(i); for (int j = 0; j < fs.length; j++) { if (fs[j] == classI) { instA[j] = Double.MAX_VALUE; // missing for the class } else if (inst.isMissing(fs[j])) { instA[j] = Double.MAX_VALUE; } else { instA[j] = inst.value(fs[j]); } } insertIntoTable(inst, instA); } if (m_CVFolds == 1) { // calculate leave one out error for (i = 0; i < m_numInstances; i++) { Instance inst = m_theInstances.instance(i); for (int j = 0; j < fs.length; j++) { if (fs[j] == classI) { instA[j] = Double.MAX_VALUE; // missing for the class } else if (inst.isMissing(fs[j])) { instA[j] = Double.MAX_VALUE; } else { instA[j] = inst.value(fs[j]); } } evaluateInstanceLeaveOneOut(inst, instA); } } else { m_theInstances.randomize(m_rr); m_theInstances.stratify(m_CVFolds); // calculate 10 fold cross validation error for (i = 0; i < m_CVFolds; i++) { Instances insts = m_theInstances.testCV(m_CVFolds, i); evaluateFoldCV(insts, fs); } } switch (m_evaluationMeasure) { case EVAL_DEFAULT: if (m_classIsNominal) { return m_evaluation.pctCorrect(); } return -m_evaluation.rootMeanSquaredError(); case EVAL_ACCURACY: return m_evaluation.pctCorrect(); case EVAL_RMSE: return -m_evaluation.rootMeanSquaredError(); case EVAL_MAE: return -m_evaluation.meanAbsoluteError(); case EVAL_AUC: double[] classPriors = m_evaluation.getClassPriors(); Utils.normalize(classPriors); double weightedAUC = 0; for (i = 0; i < m_theInstances.classAttribute().numValues(); i++) { double tempAUC = m_evaluation.areaUnderROC(i); if (!Utils.isMissingValue(tempAUC)) { weightedAUC += (classPriors[i] * tempAUC); } else { System.err.println("Undefined AUC!!"); } } return weightedAUC; } // shouldn't get here return 0.0; }
/** * Calculates the accuracy on a test fold for internal cross validation of feature sets * * @param fold set of instances to be "left out" and classified * @param fs currently selected feature set * @return the accuracy for the fold * @throws Exception if something goes wrong */ double evaluateFoldCV(Instances fold, int[] fs) throws Exception { int i; int ruleCount = 0; int numFold = fold.numInstances(); int numCl = m_theInstances.classAttribute().numValues(); double[][] class_distribs = new double[numFold][numCl]; double[] instA = new double[fs.length]; double[] normDist; DecisionTableHashKey thekey; double acc = 0.0; int classI = m_theInstances.classIndex(); Instance inst; if (m_classIsNominal) { normDist = new double[numCl]; } else { normDist = new double[2]; } // first *remove* instances for (i = 0; i < numFold; i++) { inst = fold.instance(i); for (int j = 0; j < fs.length; j++) { if (fs[j] == classI) { instA[j] = Double.MAX_VALUE; // missing for the class } else if (inst.isMissing(fs[j])) { instA[j] = Double.MAX_VALUE; } else { instA[j] = inst.value(fs[j]); } } thekey = new DecisionTableHashKey(instA); if ((class_distribs[i] = (double[]) m_entries.get(thekey)) == null) { throw new Error("This should never happen!"); } else { if (m_classIsNominal) { class_distribs[i][(int) inst.classValue()] -= inst.weight(); } else { class_distribs[i][0] -= (inst.classValue() * inst.weight()); class_distribs[i][1] -= inst.weight(); } ruleCount++; } m_classPriorCounts[(int) inst.classValue()] -= inst.weight(); } double[] classPriors = m_classPriorCounts.clone(); Utils.normalize(classPriors); // now classify instances for (i = 0; i < numFold; i++) { inst = fold.instance(i); System.arraycopy(class_distribs[i], 0, normDist, 0, normDist.length); if (m_classIsNominal) { boolean ok = false; for (int j = 0; j < normDist.length; j++) { if (Utils.gr(normDist[j], 1.0)) { ok = true; break; } } if (!ok) { // majority class normDist = classPriors.clone(); } // if (ok) { Utils.normalize(normDist); if (m_evaluationMeasure == EVAL_AUC) { m_evaluation.evaluateModelOnceAndRecordPrediction(normDist, inst); } else { m_evaluation.evaluateModelOnce(normDist, inst); } /* } else { normDist[(int)m_majority] = 1.0; if (m_evaluationMeasure == EVAL_AUC) { m_evaluation.evaluateModelOnceAndRecordPrediction(normDist, inst); } else { m_evaluation.evaluateModelOnce(normDist, inst); } } */ } else { if (Utils.eq(normDist[1], 0.0)) { double[] temp = new double[1]; temp[0] = m_majority; m_evaluation.evaluateModelOnce(temp, inst); } else { double[] temp = new double[1]; temp[0] = normDist[0] / normDist[1]; m_evaluation.evaluateModelOnce(temp, inst); } } } // now re-insert instances for (i = 0; i < numFold; i++) { inst = fold.instance(i); m_classPriorCounts[(int) inst.classValue()] += inst.weight(); if (m_classIsNominal) { class_distribs[i][(int) inst.classValue()] += inst.weight(); } else { class_distribs[i][0] += (inst.classValue() * inst.weight()); class_distribs[i][1] += inst.weight(); } } return acc; }
/** * Returns a description of the classifier. * * @return a description of the classifier as a string. */ public String toString() { if (m_entries == null) { return "Decision Table: No model built yet."; } else { StringBuffer text = new StringBuffer(); text.append( "Decision Table:" + "\n\nNumber of training instances: " + m_numInstances + "\nNumber of Rules : " + m_entries.size() + "\n"); if (m_useIBk) { text.append("Non matches covered by IB1.\n"); } else { text.append("Non matches covered by Majority class.\n"); } text.append(m_search.toString()); /*text.append("Best first search for feature set,\nterminated after "+ m_maxStale+" non improving subsets.\n"); */ text.append("Evaluation (for feature selection): CV "); if (m_CVFolds > 1) { text.append("(" + m_CVFolds + " fold) "); } else { text.append("(leave one out) "); } text.append("\nFeature set: " + printFeatures()); if (m_displayRules) { // find out the max column width int maxColWidth = 0; for (int i = 0; i < m_dtInstances.numAttributes(); i++) { if (m_dtInstances.attribute(i).name().length() > maxColWidth) { maxColWidth = m_dtInstances.attribute(i).name().length(); } if (m_classIsNominal || (i != m_dtInstances.classIndex())) { Enumeration e = m_dtInstances.attribute(i).enumerateValues(); while (e.hasMoreElements()) { String ss = (String) e.nextElement(); if (ss.length() > maxColWidth) { maxColWidth = ss.length(); } } } } text.append("\n\nRules:\n"); StringBuffer tm = new StringBuffer(); for (int i = 0; i < m_dtInstances.numAttributes(); i++) { if (m_dtInstances.classIndex() != i) { int d = maxColWidth - m_dtInstances.attribute(i).name().length(); tm.append(m_dtInstances.attribute(i).name()); for (int j = 0; j < d + 1; j++) { tm.append(" "); } } } tm.append(m_dtInstances.attribute(m_dtInstances.classIndex()).name() + " "); for (int i = 0; i < tm.length() + 10; i++) { text.append("="); } text.append("\n"); text.append(tm); text.append("\n"); for (int i = 0; i < tm.length() + 10; i++) { text.append("="); } text.append("\n"); Enumeration e = m_entries.keys(); while (e.hasMoreElements()) { DecisionTableHashKey tt = (DecisionTableHashKey) e.nextElement(); text.append(tt.toString(m_dtInstances, maxColWidth)); double[] ClassDist = (double[]) m_entries.get(tt); if (m_classIsNominal) { int m = Utils.maxIndex(ClassDist); try { text.append(m_dtInstances.classAttribute().value(m) + "\n"); } catch (Exception ee) { System.out.println(ee.getMessage()); } } else { text.append((ClassDist[0] / ClassDist[1]) + "\n"); } } for (int i = 0; i < tm.length() + 10; i++) { text.append("="); } text.append("\n"); text.append("\n"); } return text.toString(); } }
/** * Generates the classifier. * * @param data set of instances serving as training data * @throws Exception if the classifier has not been generated successfully */ public void buildClassifier(Instances data) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(data); // remove instances with missing class m_theInstances = new Instances(data); m_theInstances.deleteWithMissingClass(); m_rr = new Random(1); if (m_theInstances.classAttribute().isNominal()) { // Set up class priors m_classPriorCounts = new double[data.classAttribute().numValues()]; Arrays.fill(m_classPriorCounts, 1.0); for (int i = 0; i < data.numInstances(); i++) { Instance curr = data.instance(i); m_classPriorCounts[(int) curr.classValue()] += curr.weight(); } m_classPriors = m_classPriorCounts.clone(); Utils.normalize(m_classPriors); } setUpEvaluator(); if (m_theInstances.classAttribute().isNumeric()) { m_disTransform = new weka.filters.unsupervised.attribute.Discretize(); m_classIsNominal = false; // use binned discretisation if the class is numeric ((weka.filters.unsupervised.attribute.Discretize) m_disTransform).setBins(10); ((weka.filters.unsupervised.attribute.Discretize) m_disTransform).setInvertSelection(true); // Discretize all attributes EXCEPT the class String rangeList = ""; rangeList += (m_theInstances.classIndex() + 1); // System.out.println("The class col: "+m_theInstances.classIndex()); ((weka.filters.unsupervised.attribute.Discretize) m_disTransform) .setAttributeIndices(rangeList); } else { m_disTransform = new weka.filters.supervised.attribute.Discretize(); ((weka.filters.supervised.attribute.Discretize) m_disTransform).setUseBetterEncoding(true); m_classIsNominal = true; } m_disTransform.setInputFormat(m_theInstances); m_theInstances = Filter.useFilter(m_theInstances, m_disTransform); m_numAttributes = m_theInstances.numAttributes(); m_numInstances = m_theInstances.numInstances(); m_majority = m_theInstances.meanOrMode(m_theInstances.classAttribute()); // Perform the search int[] selected = m_search.search(m_evaluator, m_theInstances); m_decisionFeatures = new int[selected.length + 1]; System.arraycopy(selected, 0, m_decisionFeatures, 0, selected.length); m_decisionFeatures[m_decisionFeatures.length - 1] = m_theInstances.classIndex(); // reduce instances to selected features m_delTransform = new Remove(); m_delTransform.setInvertSelection(true); // set features to keep m_delTransform.setAttributeIndicesArray(m_decisionFeatures); m_delTransform.setInputFormat(m_theInstances); m_dtInstances = Filter.useFilter(m_theInstances, m_delTransform); // reset the number of attributes m_numAttributes = m_dtInstances.numAttributes(); // create hash table m_entries = new Hashtable((int) (m_dtInstances.numInstances() * 1.5)); // insert instances into the hash table for (int i = 0; i < m_numInstances; i++) { Instance inst = m_dtInstances.instance(i); insertIntoTable(inst, null); } // Replace the global table majority with nearest neighbour? if (m_useIBk) { m_ibk = new IBk(); m_ibk.buildClassifier(m_theInstances); } // Save memory if (m_saveMemory) { m_theInstances = new Instances(m_theInstances, 0); m_dtInstances = new Instances(m_dtInstances, 0); } m_evaluation = null; }