public void printTheBestByThr(long thr) { System.out.println("------THE BEST BY SPEAKERil------"); Hashtable cluster = clusterResultSet.getCluster(); Iterator<String> it = cluster.keySet().iterator(); Hashtable<String, Vector> speaker = new Hashtable<String, Vector>(); while (it.hasNext()) { String cr_it = (String) it.next(); // System.out.println(cr_it); ClusterResult cr = (ClusterResult) cluster.get(cr_it); Object[] db_arr = cr.getValue().keySet().toArray(); Arrays.sort(db_arr); int ln = db_arr.length; if (speaker.keySet().contains((String) cr.getValue().get(db_arr[ln - 1]))) { Vector<String> tmp = speaker.get(cr.getValue().get(db_arr[ln - 1])); tmp.add(cr_it); speaker.put((String) cr.getValue().get(db_arr[ln - 1]), tmp); } else { Vector<String> tmp = new Vector<String>(); tmp.add(cr_it); speaker.put((String) cr.getValue().get(db_arr[ln - 1]), tmp); } // System.out.println("score="+db_arr[ln-1] +" name="+cr.getValue().get(db_arr[ln-1]) ); } Iterator<String> sp_it = speaker.keySet().iterator(); // String f // ="/Users/labcontenuti/Documents/workspace/AudioActive/84/test_file/properties/testindent.txt"; OutputStreamWriter dos; try { dos = new OutputStreamWriter(new FileOutputStream(outputRoot + "/" + baseName + "_ident.txt")); while (sp_it.hasNext()) { String key = (String) sp_it.next(); System.out.println("name=" + key); for (int i = 0; i < ((Vector) speaker.get(key)).size(); i++) { TreeMap<Integer, Segment> map = clusterSetResult .getCluster((String) ((Vector) speaker.get(key)).get(i)) .clusterToFrames(); System.out.println( " cluster=" + ((Vector) speaker.get(key)).get(i) + " lenght=" + clusterSetResult .getCluster((String) ((Vector) speaker.get(key)).get(i)) .getLength()); dos.write(((Vector) speaker.get(key)).get(i) + "=" + key + "\n"); } } dos.close(); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } }
/** * Decode. * * @param nbComp the nb comp * @param threshold the threshold * @param clusterSet the cluster set * @param featureSet the feature set * @param parameter the parameter * @return the cluster set * @throws Exception the exception */ public ClusterSet decode( int nbComp, double threshold, ClusterSet clusterSet, AudioFeatureSet featureSet, Parameter parameter) throws Exception { String mask = parameter.getParameterSegmentationOutputFile().getMask(); String oldModelKind = parameter.getParameterModel().getModelKindAsString(); int oldNumberOfComponent = parameter.getParameterModel().getNumberOfComponents(); // ** Train GMM for each cluster. // ** GMM is a 8 component gaussian with diagonal covariance matrix // ** one GMM = one speaker = one cluster // ** initialization of the GMMs : // ** - same global covariance for each gaussian, // ** - 1/8 for the weight, // ** - means are initialized with the mean of 10 successive vectors taken parameter.getParameterModel().setModelKind("DIAG"); parameter.getParameterModel().setNumberOfComponents(nbComp); GMMArrayList gmmInitVect = new GMMArrayList(clusterSet.clusterGetSize()); MTrainInit.make(featureSet, clusterSet, gmmInitVect, parameter); // ** EM training of the initialized GMM GMMArrayList gmmVect = new GMMArrayList(clusterSet.clusterGetSize()); MTrainEM.make(featureSet, clusterSet, gmmInitVect, gmmVect, parameter); // ** set the penalty to move from the state i to the state j, penalty to move from i to i is // equal to 0 parameter.getParameterDecoder().setDecoderPenalty(String.valueOf(threshold)); // ** make Viterbi decoding using the 8-GMM set // ** one state = one GMM = one speaker = one cluster ClusterSet clustersDClust = MDecode.make(featureSet, clusterSet, gmmVect, parameter); if (parameter.getParameterDiarization().isSaveAllStep()) { parameter.getParameterSegmentationOutputFile().setMask(mask + ".d.seg"); MainTools.writeClusterSet(parameter, clustersDClust, false); } // ** move the boundaries of the segment in low energy part of the signal ClusterSet clustersAdjClust = SAdjSeg.make(featureSet, clustersDClust, parameter); if (parameter.getParameterDiarization().isSaveAllStep()) { parameter.getParameterSegmentationOutputFile().setMask(mask + ".adj.seg"); MainTools.writeClusterSet(parameter, clustersAdjClust, false); } parameter.getParameterSegmentationOutputFile().setMask(mask); parameter.getParameterModel().setNumberOfComponents(oldNumberOfComponent); parameter.getParameterModel().setModelKind(oldModelKind); return clustersAdjClust; }
/** * Sanity check. * * @param clusterSet the cluster set * @param featureSet the feature set * @param parameter the parameter * @return the cluster set * @throws DiarizationException the diarization exception * @throws IOException Signals that an I/O exception has occurred. * @throws ParserConfigurationException the parser configuration exception * @throws SAXException the sAX exception * @throws TransformerException the transformer exception */ public ClusterSet sanityCheck( ClusterSet clusterSet, AudioFeatureSet featureSet, Parameter parameter) throws DiarizationException, IOException, ParserConfigurationException, SAXException, TransformerException { String mask = parameter.getParameterSegmentationOutputFile().getMask(); ClusterSet clustersSegInit = new ClusterSet(); MSegInit.make(featureSet, clusterSet, clustersSegInit, parameter); clustersSegInit.collapse(); if (parameter.getParameterDiarization().isSaveAllStep()) { parameter.getParameterSegmentationOutputFile().setMask(mask + ".i.seg"); MainTools.writeClusterSet(parameter, clustersSegInit, false); } parameter.getParameterSegmentationOutputFile().setMask(mask); return clustersSegInit; }
/** Run. */ public void run() { ClusterSet clusterSet = getNextClusterSet(); while (clusterSet != null) { Parameter parameter = getParameter(arguments); parameter.show = clusterSet.getShowNames().first(); logger.finer("-------------------------------------------"); logger.finer("--- " + parameter.show + " ---"); logger.finer("-------------------------------------------"); TreeMap<String, DiarizationResultList> showResult; try { showResult = tunEster2Diarization(parameter, clusterSet); sumResult(showResult); System.gc(); } catch (DiarizationException e) { logger.log(Level.SEVERE, "Diarization error", e); e.printStackTrace(); } catch (Exception e) { logger.log(Level.SEVERE, "Exception error", e); e.printStackTrace(); } clusterSet = getNextClusterSet(); } }
/** * Initialize. * * @param parameter the parameter * @return the cluster set * @throws DiarizationException the diarization exception * @throws Exception the exception */ public ClusterSet initialize(Parameter parameter) throws DiarizationException, Exception { // ** get the first diarization logger.info("Initialize segmentation"); ClusterSet clusterSet = null; if (parameter.getParameterDiarization().isLoadInputSegmentation()) { clusterSet = MainTools.readClusterSet(parameter); // seg IRIT // return clusterSet; // seg IRIT } else { clusterSet = new ClusterSet(); Cluster cluster = clusterSet.createANewCluster("init"); Segment segment = new Segment( parameter.show, 0, 1, cluster, parameter.getParameterSegmentationInputFile().getRate()); cluster.addSegment(segment); } return clusterSet; }
/** * Tun ester2 speaker clr clustering. * * @param referenceClusterSet the reference cluster set * @param uemClusterSet the uem cluster set * @param partialKey the partial key * @param method the method * @param clusterSetBase the cluster set base * @param clusterSet the cluster set * @param featureSet the feature set * @param parameter the parameter * @return the diarization result list * @throws Exception the exception */ public DiarizationResultList tunEster2SpeakerCLRClustering( ClusterSet referenceClusterSet, ClusterSet uemClusterSet, String partialKey, String method, ClusterSet clusterSetBase, ClusterSet clusterSet, AudioFeatureSet featureSet, Parameter parameter) throws Exception { String oldSpeechDetectorMethod = parameter.getParameterInputFeature().getSpeechMethodAsString(); double oldSpeechDetectorThreshold = parameter.getParameterInputFeature().getSpeechThreshold(); String oldModelKind = parameter.getParameterModel().getModelKindAsString(); int oldNumberOfComponent = parameter.getParameterModel().getNumberOfComponents(); String oldMethod = parameter.getParameterClustering().getMethodAsString(); double oldThreshold = parameter.getParameterClustering().getThreshold(); String oldEMControl = parameter.getParameterEM().getEMControl(); int oldNTop = parameter.getParameterTopGaussian().getScoreNTop(); boolean oldSaveAll = parameter.getParameterDiarization().isSaveAllStep(); DiarizationResultList localResult = new DiarizationResultList(cMin, cMax, mult); DiarizationError computeError = new DiarizationError(referenceClusterSet, uemClusterSet); double prevScore = cMin; // ---- Begin NEW v 1.13 --- parameter.getParameterInputFeature().setSpeechMethod("E"); parameter.getParameterInputFeature().setSpeechThreshold(0.1); // ---- End NEW v 1.13 --- String FeatureFormat = "featureSetTransformation"; String dir = "ester2"; InputStream ubmInputStream = getClass().getResourceAsStream(dir + "/ubm.gmm"); GMMArrayList ubmVect = MainTools.readGMMContainer(ubmInputStream, parameter.getParameterModel()); GMM ubm = ubmVect.get(0); /* * int nbCep = 16; logger.info("---> nbCep:"+nbCep); FeatureSet featureSet2 = loadFeature(parameter, clusterSet, "audio16kHz2sphinx,1:3:2:0:0:0,"+nbCep+",1:1:300:4"); logger.info("---> nbCep:"+nbCep); //logger.fine("*** nbFeaturesNorm:" + * clusterSetBase.getLength()); */ // A tester AudioFeatureSet featureSet2 = loadFeature(featureSet, parameter, clusterSet, FeatureFormat + ",1:3:2:0:0:0,13,1:1:300:4"); // v5.14 // FeatureSet featureSet2 = loadFeature(featureSet, parameter, clusterSet, FeatureFormat // + ",1:3:2:0:0:0,13,1:1:0:0"); parameter.getParameterModel().setModelKind("DIAG"); parameter.getParameterModel().setNumberOfComponents(ubm.getNbOfComponents()); parameter.getParameterClustering().setMethod(method); // ---- Begin NEW v 1.19 --- // parameter.getParameterEM().setEMControl("1,1,0.01"); // parameter.getParameterClustering().setThreshold(0); // ---- End NEW v 1.19 --- parameter.getParameterClustering().setThreshold(cMax); parameter.getParameterEM().setEMControl("1,5,0.01"); parameter.getParameterTopGaussian().setScoreNTop(5); parameter.getParameterDiarization().setSaveAllStep(false); CLRHClustering clustering = new CLRHClustering(clusterSet, featureSet2, parameter, ubm); // int nbCluster = clusterSet.clusterGetSize(); // logger.info("initialise clustering CLR clusterSet:"+clusterSet); clustering.initialize(); double score = clustering.getScoreOfCandidatesForMerging(); DiarizationResult error = computeError.scoreOfMatchedSpeakers(clustering.getClusterSet()); double errorRate = error.getErrorRate(); localResult.setResult(prevScore, score, error); // prevScore = Math.max(score, prevScore); logger.fine( "first " + parameter.show + " key=" + partialKey + " clrScore=" + score + " clrErrorRate=" + errorRate + " clrSize=" + clustering.getSize() + "/" + referenceClusterSet.clusterGetSize()); while ((score < cMax) && (clustering.getSize() > 1)) { localResult.setResult(prevScore, score, error); prevScore = Math.max(score, prevScore); clustering.mergeCandidates(); // -- start V5.16 -- // logger.info("--> Decoding"); // ClusterSet decodeClusterSet = MDecode.make(featureSet2, clustering.getClusterSet(), // clustering.getGmmList(), parameter); // logger.info("--> Clustering"); // featureSet2 = loadFeature(featureSet, parameter, decodeClusterSet, FeatureFormat // + ",1:3:2:0:0:0,13,1:1:300:4"); // clustering = new CLRHClustering(decodeClusterSet, featureSet2, parameter, ubm); // clustering.initialize(); // -- end V5.16 -- score = clustering.getScoreOfCandidatesForMerging(); error = computeError.scoreOfMatchedSpeakers(clustering.getClusterSet()); errorRate = error.getErrorRate(); // localResult.setResult(prevScore, score, error); // prevScore = Math.max(score, prevScore); logger.fine( parameter.show + " key=" + partialKey + " clrScore=" + score + " clrErrorRate=" + errorRate + " clrSize=" + clustering.getSize() + "/" + referenceClusterSet.clusterGetSize()); } localResult.setResult(prevScore, score, error); localResult.setResult(score, cMax, error); logger.finer(parameter.show + " key=" + partialKey + " resultat du fichier"); localResult.log("partial result: " + parameter.show + " " + partialKey); clustering.reset(); parameter.getParameterModel().setNumberOfComponents(oldNumberOfComponent); parameter.getParameterModel().setModelKind(oldModelKind); parameter.getParameterClustering().setMethod(oldMethod); parameter.getParameterClustering().setThreshold(oldThreshold); parameter.getParameterEM().setEMControl(oldEMControl); parameter.getParameterTopGaussian().setScoreNTop(oldNTop); parameter.getParameterInputFeature().setSpeechMethod(oldSpeechDetectorMethod); parameter.getParameterInputFeature().setSpeechThreshold(oldSpeechDetectorThreshold); parameter.getParameterDiarization().setSaveAllStep(oldSaveAll); return localResult; }
/** * Tun ester2 diarization. * * @param parameter the parameter * @param clusterSet the cluster set * @return the tree map * @throws DiarizationException the diarization exception * @throws Exception the exception */ public TreeMap<String, DiarizationResultList> tunEster2Diarization( Parameter parameter, ClusterSet clusterSet) throws DiarizationException, Exception { TreeMap<String, DiarizationResultList> result = new TreeMap<String, DiarizationResultList>(); // double paramThr = parameter.getParameterClustering().getThreshold(); lMin = parameter.getParameterDiarization().getThreshold("l"); lMax = parameter.getParameterDiarization().getMaxThreshold("l"); hMin = parameter.getParameterDiarization().getThreshold("h"); hMax = parameter.getParameterDiarization().getMaxThreshold("h"); dMin = parameter.getParameterDiarization().getThreshold("d"); dMax = parameter.getParameterDiarization().getMaxThreshold("d"); cMin = parameter.getParameterDiarization().getThreshold("c"); cMax = parameter.getParameterDiarization().getMaxThreshold("c"); String featureDesc = parameter.getParameterInputFeature().getFeaturesDescriptorAsString(); AudioFeatureSet featureSet = null; ClusterSet clustersSegInit = null; if (parameter.getParameterDiarization().isLoadInputSegmentation() == false) { featureSet = loadFeature(parameter, clusterSet, featureDesc); featureSet.setCurrentShow(parameter.show); int nbFeatures = featureSet.getNumberOfFeatures(); clusterSet.getFirstCluster().firstSegment().setLength(nbFeatures); clustersSegInit = sanityCheck(clusterSet, featureSet, parameter); } else { featureSet = loadFeature(parameter, clusterSet, featureDesc); featureSet.setCurrentShow(parameter.show); clustersSegInit = sanityCheck(clusterSet, featureSet, parameter); featureSet = loadFeature(parameter, clustersSegInit, featureDesc); featureSet.setCurrentShow(parameter.show); } // seg IRIT // ClusterSet clustersSegSave = clustersSegInit; // seg IRIT ClusterSet referenceClusterSet = MainTools.readTheSecondClusterSet(parameter); ClusterSet uemClusterSet = MainTools.readThe3rdClusterSet(parameter); if (parameter.getParameterDiarization().isLastStepOnly()) { String key = "l=" + lMin + " h=" + hMin + " d=" + dMin; DiarizationResultList values = null; if (parameter.getParameterDiarization().isCEClustering() == false) { logger.warning(" nothing to do isCEClustering == false"); } else { values = tunEster2SpeakerCLRClustering( referenceClusterSet, uemClusterSet, key, "ce", clusterSet, clusterSet, featureSet, parameter); } result.put(key, values); return result; } ClusterSet clustersSegSave = segmentation("GLR", "FULL", clustersSegInit, featureSet, parameter); for (double l = lMin; l <= lMax; l += 0.5) { ClusterSet clustersSeg = clustersSegSave.clone(); logger.finest("clustering l=" + l); ClusterSet clustersLClust = clusteringLinear(l, clustersSeg, featureSet, parameter); // ---- Begin NEW v 1.14 --- for (double h = hMin; h <= hMax; h += 0.5) { // for (double h = hMin; h <= hMax; h += 0.2) { // ---- end NEW v 1.14 --- // if (h > l) { ClusterSet clustersHClust = clustering(h, clustersLClust, featureSet, parameter); for (double d = dMin; d <= dMax; d += 50) { ClusterSet clustersDClust = decode(8, d, clustersHClust, featureSet, parameter); // double error = DiarizationError.scoreOfMatchedSpeakers(referenceClusterSet, // clustersDClust); ClusterSet clustersSplitClust = speech( "10,10,50", clusterSet, clustersSegInit, clustersDClust, featureSet, parameter); ClusterSet clustersGender = gender(clusterSet, clustersSplitClust, featureSet, parameter); String key = "l=" + l + " h=" + h + " d=" + d; DiarizationResultList values = null; if (parameter.getParameterDiarization().isCEClustering() == false) { values = new DiarizationResultList(0, 0, 1); DiarizationError computeError = new DiarizationError(referenceClusterSet, uemClusterSet); DiarizationResult error = computeError.scoreOfMatchedSpeakers(clustersGender); values.setResult(0, 0, error); logger.finer(parameter.show + " key=" + key + " resultat du fichier"); values.log("partial result: " + parameter.show + " " + key); } else { // V4.19 = CLUST_H_BIC_GMM_MAP // values = tunEster2SpeakerCLRClustering(referenceClusterSet, key, "bicgmmmap", // clustersGender, clustersGender, featureSet, parameter); // V5.16 = ce_d // values = tunEster2SpeakerCLRClustering(referenceClusterSet, key, "ce_d", // clustersGender, clustersGender, featureSet, parameter); values = tunEster2SpeakerCLRClustering( referenceClusterSet, uemClusterSet, key, "ce", clustersGender, clustersGender, featureSet, parameter); } if (result.containsKey(key)) { result.get(key).addResultArray(values); } else { result.put(key, values); } } // } } } return result; }
/** * Ester2 version. * * @param parameter the parameter * @throws DiarizationException the diarization exception * @throws Exception the exception */ public void ester2Version(Parameter parameter) throws DiarizationException, Exception { // ** Caution this system is developed using Sphinx MFCC computed with legacy mode ClusterSet referenceClusterSet = null; if (!parameter.getParameterSegmentationInputFile2().getMask().equals("")) { referenceClusterSet = MainTools.readTheSecondClusterSet(parameter); } ClusterSet uemClusterSet = null; if (!parameter.getParameterSegmentationInputFile3().getMask().equals("")) { referenceClusterSet = MainTools.readThe3rdClusterSet(parameter); } ParameterBNDiarization parameterDiarization = parameter.getParameterDiarization(); // ** mask for the output of the segmentation file ClusterSet clusterSet = initialize(parameter); // ** load the features, sphinx format (13 MFCC with C0) or compute it form a wave file AudioFeatureSet featureSet = loadFeature( parameter, clusterSet, parameter.getParameterInputFeature().getFeaturesDescriptorAsString()); featureSet.setCurrentShow(parameter.show); int nbFeatures = featureSet.getNumberOfFeatures(); if (parameter.getParameterDiarization().isLoadInputSegmentation() == false) { clusterSet.getFirstCluster().firstSegment().setLength(nbFeatures); } // clusterSet.debug(3); ClusterSet clustersSegInit = sanityCheck(clusterSet, featureSet, parameter); ClusterSet clustersSeg = segmentation("GLR", "FULL", clustersSegInit, featureSet, parameter); // Seg IRIT // ClusterSet clustersSegInit = clusterSet; // ClusterSet clustersSeg = clusterSet; // Seg IRIT ClusterSet clustersLClust = clusteringLinear( parameterDiarization.getThreshold("l"), clustersSeg, featureSet, parameter); ClusterSet clustersHClust = clustering(parameterDiarization.getThreshold("h"), clustersLClust, featureSet, parameter); // MainTools.writeClusterSet(parameter, clustersHClust, false); ClusterSet clustersDClust = decode(8, parameterDiarization.getThreshold("d"), clustersHClust, featureSet, parameter); ClusterSet clustersSplitClust = speech("10,10,50", clusterSet, clustersSegInit, clustersDClust, featureSet, parameter); ClusterSet clustersGender = gender(clusterSet, clustersSplitClust, featureSet, parameter); if (parameter.getParameterDiarization().isCEClustering()) { ClusterSet clustersCLR = speakerClustering( parameterDiarization.getThreshold("c"), "ce", clustersSegInit, clustersGender, featureSet, parameter); MainTools.writeClusterSet(parameter, clustersCLR, false); if (referenceClusterSet != null) { DiarizationError computeError = new DiarizationError(referenceClusterSet, uemClusterSet); computeError.scoreOfMatchedSpeakers(clustersCLR); } } else { MainTools.writeClusterSet(parameter, clustersGender, false); } }
public ClusterSet make( AudioFeatureSet featureSet, ClusterSet clusterSet, GMMArrayList gmmList, GMMArrayList gmmTopList, Parameter parameter) throws DiarizationException, IOException { logger.info("Compute Score"); int size = gmmList.size(); logger.finer("GMM size:" + size); ArrayList<String> genderString = new ArrayList<String>(); ArrayList<String> bandwidthString = new ArrayList<String>(); for (int i = 0; i < size; i++) { String gmmName = gmmList.get(i).getName(); if (parameter.getParameterScore().isGender() == true) { if (gmmName.equals("MS")) { genderString.add(Cluster.genderStrings[1]); bandwidthString.add(Segment.bandwidthStrings[2]); } else if (gmmName.equals("FS")) { genderString.add(Cluster.genderStrings[2]); bandwidthString.add(Segment.bandwidthStrings[2]); } else if (gmmName.equals("MT")) { genderString.add(Cluster.genderStrings[1]); bandwidthString.add(Segment.bandwidthStrings[1]); } else if (gmmName.equals("FT")) { genderString.add(Cluster.genderStrings[2]); bandwidthString.add(Segment.bandwidthStrings[1]); } else { genderString.add(Cluster.genderStrings[0]); bandwidthString.add(Segment.bandwidthStrings[0]); } } else { genderString.add(Cluster.genderStrings[0]); bandwidthString.add(Segment.bandwidthStrings[0]); } } ClusterSet clusterSetResult = new ClusterSet(); for (Cluster cluster : clusterSet.clusterSetValue()) { double[] sumScoreVector = new double[size]; int[] sumLenghtVector = new int[size]; double ubmScore = 0.0; GMM gmmTop = null; if (parameter.getParameterTopGaussian().getScoreNTop() >= 0) { gmmTop = gmmTopList.get(0); } Arrays.fill(sumScoreVector, 0.0); Arrays.fill(sumLenghtVector, 0); for (Segment currantSegment : cluster) { Segment segment = (currantSegment.clone()); int end = segment.getStart() + segment.getLength(); featureSet.setCurrentShow(segment.getShowName()); double[] scoreVector = new double[size]; double maxScore = 0.0; int idxMaxScore = 0; for (int i = 0; i < size; i++) { gmmList.get(i).score_initialize(); } for (int start = segment.getStart(); start < end; start++) { for (int i = 0; i < size; i++) { GMM gmm = gmmList.get(i); if (parameter.getParameterTopGaussian().getScoreNTop() >= 0) { if (i == 0) { gmmTop.score_getAndAccumulateAndFindTopComponents( featureSet, start, parameter.getParameterTopGaussian().getScoreNTop()); } gmm.score_getAndAccumulateForComponentSubset( featureSet, start, gmmTop.getTopGaussianVector()); } else { gmm.score_getAndAccumulate(featureSet, start); } } } if (parameter.getParameterTopGaussian().getScoreNTop() >= 0) { ubmScore = gmmTop.score_getMeanLog(); gmmTop.score_getSumLog(); gmmTop.score_getCount(); gmmTop.score_reset(); } for (int i = 0; i < size; i++) { GMM gmm = gmmList.get(i); scoreVector[i] = gmm.score_getMeanLog(); sumLenghtVector[i] += gmm.score_getCount(); sumScoreVector[i] += gmm.score_getSumLog(); if (i == 0) { maxScore = scoreVector[0]; idxMaxScore = 0; } else { double value = scoreVector[i]; if (maxScore < value) { maxScore = value; idxMaxScore = i; } } gmm.score_reset(); } if (parameter.getParameterScore().isTNorm()) { double sumScore = 0; double sum2Score = 0; for (int i = 0; i < size; i++) { sumScore += scoreVector[i]; sum2Score += (scoreVector[i] * scoreVector[i]); } for (int i = 0; i < size; i++) { double value = scoreVector[i]; double mean = (sumScore - value) / (size - 1); double et = Math.sqrt(((sum2Score - (value * value)) / (size - 1)) - (mean * mean)); scoreVector[i] = (value - mean) / et; } } if (parameter.getParameterScore().isGender() == true) { segment.setBandwidth(bandwidthString.get(idxMaxScore)); segment.setInformation("segmentGender", genderString.get(idxMaxScore)); } if (parameter.getParameterScore().isBySegment()) { for (int k = 0; k < size; k++) { double score = scoreVector[k]; GMM gmm = gmmList.get(k); segment.setInformation("score:" + gmm.getName(), score); currantSegment.setInformation("score:" + gmm.getName(), score); } if (parameter.getParameterTopGaussian().getScoreNTop() >= 0) { segment.setInformation("score:" + "UBM", ubmScore); currantSegment.setInformation("score:" + "UBM", ubmScore); } } String newName = cluster.getName(); if (parameter.getParameterScore().isByCluster() == false) { if ((scoreVector[idxMaxScore] > parameter.getParameterSegmentation().getThreshold()) && (parameter.getParameterScore().getLabel() != ParameterScore.LabelType.LABEL_TYPE_NONE.ordinal())) { if (parameter.getParameterScore().getLabel() == ParameterScore.LabelType.LABEL_TYPE_ADD.ordinal()) { newName += "_"; newName += gmmList.get(idxMaxScore).getName(); } else { newName = gmmList.get(idxMaxScore).getName(); } } Cluster temporaryCluster = clusterSetResult.getOrCreateANewCluster(newName); temporaryCluster.setGender(cluster.getGender()); if (parameter.getParameterScore().isGender() == true) { temporaryCluster.setGender(genderString.get(idxMaxScore)); } temporaryCluster.addSegment(segment); } } if (parameter.getParameterScore().isByCluster()) { for (int i = 0; i < size; i++) { sumScoreVector[i] /= sumLenghtVector[i]; } if (parameter.getParameterScore().isTNorm()) { double sumScore = 0; double sum2Score = 0; for (int i = 0; i < size; i++) { sumScore += sumScoreVector[i]; sum2Score += (sumScoreVector[i] * sumScoreVector[i]); } for (int i = 0; i < size; i++) { double value = sumScoreVector[i]; double mean = (sumScore - value) / (size - 1); double et = Math.sqrt(((sum2Score - (value * value)) / (size - 1)) - (mean * mean)); sumScoreVector[i] = (value - mean) / et; } } double maxScore = sumScoreVector[0]; int idxMaxScore = 0; for (int i = 1; i < size; i++) { double s = sumScoreVector[i]; if (maxScore < s) { maxScore = s; idxMaxScore = i; } } String newName = cluster.getName(); if ((sumScoreVector[idxMaxScore] > parameter.getParameterSegmentation().getThreshold()) && (parameter.getParameterScore().getLabel() != ParameterScore.LabelType.LABEL_TYPE_NONE.ordinal())) { if (parameter.getParameterScore().getLabel() == ParameterScore.LabelType.LABEL_TYPE_ADD.ordinal()) { newName += "_"; newName += gmmList.get(idxMaxScore).getName(); } else { newName = gmmList.get(idxMaxScore).getName(); } // logger.finer("cluster name=" + cluster.getName() + " new_name=" + newName); } Cluster tempororaryCluster = clusterSetResult.getOrCreateANewCluster(newName); tempororaryCluster.setGender(cluster.getGender()); if (parameter.getParameterScore().isGender() == true) { tempororaryCluster.setGender(genderString.get(idxMaxScore)); } tempororaryCluster.setName(newName); for (Segment currantSegment : cluster) { Segment segment = (currantSegment.clone()); if (parameter.getParameterScore().isGender() == true) { segment.setBandwidth(bandwidthString.get(idxMaxScore)); } tempororaryCluster.addSegment(segment); } for (int k = 0; k < size; k++) { double score = sumScoreVector[k]; GMM gmm = gmmList.get(k); // logger.finer("****clustername = " + newName + " name=" + gmm.getName() + " =" + score+" // k="+k); // logger.log(Level.SEVERE, "****clustername = " + newName + " name=" + gmm.getName() + " // =" + score); tempororaryCluster.setInformation("score:" + gmm.getName(), score); ClusterResult cr = new ClusterResult(); cr.setName(newName); cr.getValue().put(score, gmm.getName()); System.out.println( "------ clusterResultSet.putValue(newName, gmm.getName(), score)=----------------"); System.out.println(newName + " " + gmm.getName() + " " + score); if (isName(gmm.getName())) { clusterResultSet.putValue(newName, gmm.getName(), score); } else { System.out.println("*****************" + gmm.getName() + " Non nome valido "); } } if (parameter.getParameterTopGaussian().getScoreNTop() >= 0) { // tempororaryCluster.putInformation("score:" + "length", ubmSumLen); // tempororaryCluster.putInformation("score:" + "UBM", ubmSumScore / ubmSumLen); } } } this.clusterSetResult = clusterSetResult; return clusterSetResult; }