Example #1
0
 /**
  * Provides some testing and opportunities for exploration of the probabilities of a BaseLexicon.
  * What's here currently probably only works for the English Penn Treeebank, as it uses default
  * constructors. Of the words given to test on, the first is treated as sentence initial, and the
  * rest as not sentence initial.
  *
  * @param args The command line arguments: java BaseLexicon treebankPath fileRange
  *     unknownWordModel words*
  */
 public static void main(String[] args) {
   if (args.length < 3) {
     System.err.println("java BaseLexicon treebankPath fileRange unknownWordModel words*");
     return;
   }
   System.out.print("Training BaseLexicon from " + args[0] + ' ' + args[1] + " ... ");
   Treebank tb = new DiskTreebank();
   tb.loadPath(args[0], new NumberRangesFileFilter(args[1], true));
   // TODO: change this interface so the lexicon creates its own indices?
   Index<String> wordIndex = new HashIndex<String>();
   Index<String> tagIndex = new HashIndex<String>();
   BaseLexicon lex = new BaseLexicon(wordIndex, tagIndex);
   lex.getUnknownWordModel().setUnknownLevel(Integer.parseInt(args[2]));
   lex.train(tb);
   System.out.println("done.");
   System.out.println();
   NumberFormat nf = NumberFormat.getNumberInstance();
   nf.setMaximumFractionDigits(4);
   List<String> impos = new ArrayList<String>();
   for (int i = 3; i < args.length; i++) {
     if (lex.isKnown(args[i])) {
       System.out.println(
           args[i] + " is a known word.  Log probabilities [log P(w|t)] for its taggings are:");
       for (Iterator<IntTaggedWord> it =
               lex.ruleIteratorByWord(wordIndex.indexOf(args[i], true), i - 3, null);
           it.hasNext(); ) {
         IntTaggedWord iTW = it.next();
         System.out.println(
             StringUtils.pad(iTW, 24) + nf.format(lex.score(iTW, i - 3, wordIndex.get(iTW.word))));
       }
     } else {
       String sig = lex.getUnknownWordModel().getSignature(args[i], i - 3);
       System.out.println(
           args[i]
               + " is an unknown word.  Signature with uwm "
               + lex.getUnknownWordModel().getUnknownLevel()
               + ((i == 3) ? " init" : "non-init")
               + " is: "
               + sig);
       impos.clear();
       List<String> lis = new ArrayList<String>(tagIndex.objectsList());
       Collections.sort(lis);
       for (String tStr : lis) {
         IntTaggedWord iTW = new IntTaggedWord(args[i], tStr, wordIndex, tagIndex);
         double score = lex.score(iTW, 1, args[i]);
         if (score == Float.NEGATIVE_INFINITY) {
           impos.add(tStr);
         } else {
           System.out.println(StringUtils.pad(iTW, 24) + nf.format(score));
         }
       }
       if (impos.size() > 0) {
         System.out.println(args[i] + " impossible tags: " + impos);
       }
     }
     System.out.println();
   }
 }
  /** For testing: loads a treebank and prints the trees. */
  public static void main(String[] args) {
    TreebankLangParserParams tlpp = new ChineseTreebankParserParams();
    System.out.println("Default encoding is: " + tlpp.diskTreebank().encoding());

    if (args.length < 2) {
      printlnErr(
          "Usage: edu.stanford.nlp.parser.lexparser.ChineseTreebankParserParams treesPath fileRange");
    } else {
      Treebank m = tlpp.diskTreebank();
      m.loadPath(args[0], new NumberRangesFileFilter(args[1], false));

      for (Tree t : m) {
        t.pennPrint(tlpp.pw());
      }
      System.out.println("There were " + m.size() + " trees.");
    }
  }
 private Distribution<Integer> getSegmentedWordLengthDistribution(Treebank tb) {
   // CharacterLevelTagExtender ext = new CharacterLevelTagExtender();
   ClassicCounter<Integer> c = new ClassicCounter<Integer>();
   for (Iterator iterator = tb.iterator(); iterator.hasNext(); ) {
     Tree gold = (Tree) iterator.next();
     StringBuilder goldChars = new StringBuilder();
     ArrayList goldYield = gold.yield();
     for (Iterator wordIter = goldYield.iterator(); wordIter.hasNext(); ) {
       Word word = (Word) wordIter.next();
       goldChars.append(word);
     }
     List<HasWord> ourWords = segment(goldChars.toString());
     for (int i = 0; i < ourWords.size(); i++) {
       c.incrementCount(Integer.valueOf(ourWords.get(i).word().length()));
     }
   }
   return Distribution.getDistribution(c);
 }
  public static void main(String[] args) {
    Options op = new Options(new EnglishTreebankParserParams());
    // op.tlpParams may be changed to something else later, so don't use it till
    // after options are parsed.

    System.out.println(StringUtils.toInvocationString("FactoredParser", args));

    String path = "/u/nlp/stuff/corpora/Treebank3/parsed/mrg/wsj";
    int trainLow = 200, trainHigh = 2199, testLow = 2200, testHigh = 2219;
    String serializeFile = null;

    int i = 0;
    while (i < args.length && args[i].startsWith("-")) {
      if (args[i].equalsIgnoreCase("-path") && (i + 1 < args.length)) {
        path = args[i + 1];
        i += 2;
      } else if (args[i].equalsIgnoreCase("-train") && (i + 2 < args.length)) {
        trainLow = Integer.parseInt(args[i + 1]);
        trainHigh = Integer.parseInt(args[i + 2]);
        i += 3;
      } else if (args[i].equalsIgnoreCase("-test") && (i + 2 < args.length)) {
        testLow = Integer.parseInt(args[i + 1]);
        testHigh = Integer.parseInt(args[i + 2]);
        i += 3;
      } else if (args[i].equalsIgnoreCase("-serialize") && (i + 1 < args.length)) {
        serializeFile = args[i + 1];
        i += 2;
      } else if (args[i].equalsIgnoreCase("-tLPP") && (i + 1 < args.length)) {
        try {
          op.tlpParams = (TreebankLangParserParams) Class.forName(args[i + 1]).newInstance();
        } catch (ClassNotFoundException e) {
          System.err.println("Class not found: " + args[i + 1]);
          throw new RuntimeException(e);
        } catch (InstantiationException e) {
          System.err.println("Couldn't instantiate: " + args[i + 1] + ": " + e.toString());
          throw new RuntimeException(e);
        } catch (IllegalAccessException e) {
          System.err.println("illegal access" + e);
          throw new RuntimeException(e);
        }
        i += 2;
      } else if (args[i].equals("-encoding")) {
        // sets encoding for TreebankLangParserParams
        op.tlpParams.setInputEncoding(args[i + 1]);
        op.tlpParams.setOutputEncoding(args[i + 1]);
        i += 2;
      } else {
        i = op.setOptionOrWarn(args, i);
      }
    }
    // System.out.println(tlpParams.getClass());
    TreebankLanguagePack tlp = op.tlpParams.treebankLanguagePack();

    op.trainOptions.sisterSplitters =
        new HashSet<String>(Arrays.asList(op.tlpParams.sisterSplitters()));
    //    BinarizerFactory.TreeAnnotator.setTreebankLang(tlpParams);
    PrintWriter pw = op.tlpParams.pw();

    op.testOptions.display();
    op.trainOptions.display();
    op.display();
    op.tlpParams.display();

    // setup tree transforms
    Treebank trainTreebank = op.tlpParams.memoryTreebank();
    MemoryTreebank testTreebank = op.tlpParams.testMemoryTreebank();
    // Treebank blippTreebank = ((EnglishTreebankParserParams) tlpParams).diskTreebank();
    // String blippPath = "/afs/ir.stanford.edu/data/linguistic-data/BLLIP-WSJ/";
    // blippTreebank.loadPath(blippPath, "", true);

    Timing.startTime();
    System.err.print("Reading trees...");
    testTreebank.loadPath(path, new NumberRangeFileFilter(testLow, testHigh, true));
    if (op.testOptions.increasingLength) {
      Collections.sort(testTreebank, new TreeLengthComparator());
    }

    trainTreebank.loadPath(path, new NumberRangeFileFilter(trainLow, trainHigh, true));
    Timing.tick("done.");

    System.err.print("Binarizing trees...");
    TreeAnnotatorAndBinarizer binarizer;
    if (!op.trainOptions.leftToRight) {
      binarizer =
          new TreeAnnotatorAndBinarizer(
              op.tlpParams, op.forceCNF, !op.trainOptions.outsideFactor(), true, op);
    } else {
      binarizer =
          new TreeAnnotatorAndBinarizer(
              op.tlpParams.headFinder(),
              new LeftHeadFinder(),
              op.tlpParams,
              op.forceCNF,
              !op.trainOptions.outsideFactor(),
              true,
              op);
    }

    CollinsPuncTransformer collinsPuncTransformer = null;
    if (op.trainOptions.collinsPunc) {
      collinsPuncTransformer = new CollinsPuncTransformer(tlp);
    }
    TreeTransformer debinarizer = new Debinarizer(op.forceCNF);
    List<Tree> binaryTrainTrees = new ArrayList<Tree>();

    if (op.trainOptions.selectiveSplit) {
      op.trainOptions.splitters =
          ParentAnnotationStats.getSplitCategories(
              trainTreebank,
              op.trainOptions.tagSelectiveSplit,
              0,
              op.trainOptions.selectiveSplitCutOff,
              op.trainOptions.tagSelectiveSplitCutOff,
              op.tlpParams.treebankLanguagePack());
      if (op.trainOptions.deleteSplitters != null) {
        List<String> deleted = new ArrayList<String>();
        for (String del : op.trainOptions.deleteSplitters) {
          String baseDel = tlp.basicCategory(del);
          boolean checkBasic = del.equals(baseDel);
          for (Iterator<String> it = op.trainOptions.splitters.iterator(); it.hasNext(); ) {
            String elem = it.next();
            String baseElem = tlp.basicCategory(elem);
            boolean delStr = checkBasic && baseElem.equals(baseDel) || elem.equals(del);
            if (delStr) {
              it.remove();
              deleted.add(elem);
            }
          }
        }
        System.err.println("Removed from vertical splitters: " + deleted);
      }
    }
    if (op.trainOptions.selectivePostSplit) {
      TreeTransformer myTransformer =
          new TreeAnnotator(op.tlpParams.headFinder(), op.tlpParams, op);
      Treebank annotatedTB = trainTreebank.transform(myTransformer);
      op.trainOptions.postSplitters =
          ParentAnnotationStats.getSplitCategories(
              annotatedTB,
              true,
              0,
              op.trainOptions.selectivePostSplitCutOff,
              op.trainOptions.tagSelectivePostSplitCutOff,
              op.tlpParams.treebankLanguagePack());
    }

    if (op.trainOptions.hSelSplit) {
      binarizer.setDoSelectiveSplit(false);
      for (Tree tree : trainTreebank) {
        if (op.trainOptions.collinsPunc) {
          tree = collinsPuncTransformer.transformTree(tree);
        }
        // tree.pennPrint(tlpParams.pw());
        tree = binarizer.transformTree(tree);
        // binaryTrainTrees.add(tree);
      }
      binarizer.setDoSelectiveSplit(true);
    }
    for (Tree tree : trainTreebank) {
      if (op.trainOptions.collinsPunc) {
        tree = collinsPuncTransformer.transformTree(tree);
      }
      tree = binarizer.transformTree(tree);
      binaryTrainTrees.add(tree);
    }
    if (op.testOptions.verbose) {
      binarizer.dumpStats();
    }

    List<Tree> binaryTestTrees = new ArrayList<Tree>();
    for (Tree tree : testTreebank) {
      if (op.trainOptions.collinsPunc) {
        tree = collinsPuncTransformer.transformTree(tree);
      }
      tree = binarizer.transformTree(tree);
      binaryTestTrees.add(tree);
    }
    Timing.tick("done."); // binarization
    BinaryGrammar bg = null;
    UnaryGrammar ug = null;
    DependencyGrammar dg = null;
    // DependencyGrammar dgBLIPP = null;
    Lexicon lex = null;
    Index<String> stateIndex = new HashIndex<String>();

    // extract grammars
    Extractor<Pair<UnaryGrammar, BinaryGrammar>> bgExtractor =
        new BinaryGrammarExtractor(op, stateIndex);
    // Extractor bgExtractor = new SmoothedBinaryGrammarExtractor();//new BinaryGrammarExtractor();
    // Extractor lexExtractor = new LexiconExtractor();

    // Extractor dgExtractor = new DependencyMemGrammarExtractor();

    if (op.doPCFG) {
      System.err.print("Extracting PCFG...");
      Pair<UnaryGrammar, BinaryGrammar> bgug = null;
      if (op.trainOptions.cheatPCFG) {
        List<Tree> allTrees = new ArrayList<Tree>(binaryTrainTrees);
        allTrees.addAll(binaryTestTrees);
        bgug = bgExtractor.extract(allTrees);
      } else {
        bgug = bgExtractor.extract(binaryTrainTrees);
      }
      bg = bgug.second;
      bg.splitRules();
      ug = bgug.first;
      ug.purgeRules();
      Timing.tick("done.");
    }
    System.err.print("Extracting Lexicon...");
    Index<String> wordIndex = new HashIndex<String>();
    Index<String> tagIndex = new HashIndex<String>();
    lex = op.tlpParams.lex(op, wordIndex, tagIndex);
    lex.train(binaryTrainTrees);
    Timing.tick("done.");

    if (op.doDep) {
      System.err.print("Extracting Dependencies...");
      binaryTrainTrees.clear();
      Extractor<DependencyGrammar> dgExtractor =
          new MLEDependencyGrammarExtractor(op, wordIndex, tagIndex);
      // dgBLIPP = (DependencyGrammar) dgExtractor.extract(new
      // ConcatenationIterator(trainTreebank.iterator(),blippTreebank.iterator()),new
      // TransformTreeDependency(tlpParams,true));

      // DependencyGrammar dg1 = dgExtractor.extract(trainTreebank.iterator(), new
      // TransformTreeDependency(op.tlpParams, true));
      // dgBLIPP=(DependencyGrammar)dgExtractor.extract(blippTreebank.iterator(),new
      // TransformTreeDependency(tlpParams));

      // dg = (DependencyGrammar) dgExtractor.extract(new
      // ConcatenationIterator(trainTreebank.iterator(),blippTreebank.iterator()),new
      // TransformTreeDependency(tlpParams));
      // dg=new DependencyGrammarCombination(dg1,dgBLIPP,2);
      dg =
          dgExtractor.extract(
              binaryTrainTrees); // uses information whether the words are known or not, discards
      // unknown words
      Timing.tick("done.");
      // System.out.print("Extracting Unknown Word Model...");
      // UnknownWordModel uwm = (UnknownWordModel)uwmExtractor.extract(binaryTrainTrees);
      // Timing.tick("done.");
      System.out.print("Tuning Dependency Model...");
      dg.tune(binaryTestTrees);
      // System.out.println("TUNE DEPS: "+tuneDeps);
      Timing.tick("done.");
    }

    BinaryGrammar boundBG = bg;
    UnaryGrammar boundUG = ug;

    GrammarProjection gp = new NullGrammarProjection(bg, ug);

    // serialization
    if (serializeFile != null) {
      System.err.print("Serializing parser...");
      LexicalizedParser.saveParserDataToSerialized(
          new ParserData(lex, bg, ug, dg, stateIndex, wordIndex, tagIndex, op), serializeFile);
      Timing.tick("done.");
    }

    // test: pcfg-parse and output

    ExhaustivePCFGParser parser = null;
    if (op.doPCFG) {
      parser = new ExhaustivePCFGParser(boundBG, boundUG, lex, op, stateIndex, wordIndex, tagIndex);
    }

    ExhaustiveDependencyParser dparser =
        ((op.doDep && !op.testOptions.useFastFactored)
            ? new ExhaustiveDependencyParser(dg, lex, op, wordIndex, tagIndex)
            : null);

    Scorer scorer =
        (op.doPCFG ? new TwinScorer(new ProjectionScorer(parser, gp, op), dparser) : null);
    // Scorer scorer = parser;
    BiLexPCFGParser bparser = null;
    if (op.doPCFG && op.doDep) {
      bparser =
          (op.testOptions.useN5)
              ? new BiLexPCFGParser.N5BiLexPCFGParser(
                  scorer, parser, dparser, bg, ug, dg, lex, op, gp, stateIndex, wordIndex, tagIndex)
              : new BiLexPCFGParser(
                  scorer,
                  parser,
                  dparser,
                  bg,
                  ug,
                  dg,
                  lex,
                  op,
                  gp,
                  stateIndex,
                  wordIndex,
                  tagIndex);
    }

    Evalb pcfgPE = new Evalb("pcfg  PE", true);
    Evalb comboPE = new Evalb("combo PE", true);
    AbstractEval pcfgCB = new Evalb.CBEval("pcfg  CB", true);

    AbstractEval pcfgTE = new TaggingEval("pcfg  TE");
    AbstractEval comboTE = new TaggingEval("combo TE");
    AbstractEval pcfgTEnoPunct = new TaggingEval("pcfg nopunct TE");
    AbstractEval comboTEnoPunct = new TaggingEval("combo nopunct TE");
    AbstractEval depTE = new TaggingEval("depnd TE");

    AbstractEval depDE =
        new UnlabeledAttachmentEval("depnd DE", true, null, tlp.punctuationWordRejectFilter());
    AbstractEval comboDE =
        new UnlabeledAttachmentEval("combo DE", true, null, tlp.punctuationWordRejectFilter());

    if (op.testOptions.evalb) {
      EvalbFormatWriter.initEVALBfiles(op.tlpParams);
    }

    // int[] countByLength = new int[op.testOptions.maxLength+1];

    // Use a reflection ruse, so one can run this without needing the
    // tagger.  Using a function rather than a MaxentTagger means we
    // can distribute a version of the parser that doesn't include the
    // entire tagger.
    Function<List<? extends HasWord>, ArrayList<TaggedWord>> tagger = null;
    if (op.testOptions.preTag) {
      try {
        Class[] argsClass = {String.class};
        Object[] arguments = new Object[] {op.testOptions.taggerSerializedFile};
        tagger =
            (Function<List<? extends HasWord>, ArrayList<TaggedWord>>)
                Class.forName("edu.stanford.nlp.tagger.maxent.MaxentTagger")
                    .getConstructor(argsClass)
                    .newInstance(arguments);
      } catch (Exception e) {
        System.err.println(e);
        System.err.println("Warning: No pretagging of sentences will be done.");
      }
    }

    for (int tNum = 0, ttSize = testTreebank.size(); tNum < ttSize; tNum++) {
      Tree tree = testTreebank.get(tNum);
      int testTreeLen = tree.yield().size();
      if (testTreeLen > op.testOptions.maxLength) {
        continue;
      }
      Tree binaryTree = binaryTestTrees.get(tNum);
      // countByLength[testTreeLen]++;
      System.out.println("-------------------------------------");
      System.out.println("Number: " + (tNum + 1));
      System.out.println("Length: " + testTreeLen);

      // tree.pennPrint(pw);
      // System.out.println("XXXX The binary tree is");
      // binaryTree.pennPrint(pw);
      // System.out.println("Here are the tags in the lexicon:");
      // System.out.println(lex.showTags());
      // System.out.println("Here's the tagnumberer:");
      // System.out.println(Numberer.getGlobalNumberer("tags").toString());

      long timeMil1 = System.currentTimeMillis();
      Timing.tick("Starting parse.");
      if (op.doPCFG) {
        // System.err.println(op.testOptions.forceTags);
        if (op.testOptions.forceTags) {
          if (tagger != null) {
            // System.out.println("Using a tagger to set tags");
            // System.out.println("Tagged sentence as: " +
            // tagger.processSentence(cutLast(wordify(binaryTree.yield()))).toString(false));
            parser.parse(addLast(tagger.apply(cutLast(wordify(binaryTree.yield())))));
          } else {
            // System.out.println("Forcing tags to match input.");
            parser.parse(cleanTags(binaryTree.taggedYield(), tlp));
          }
        } else {
          // System.out.println("XXXX Parsing " + binaryTree.yield());
          parser.parse(binaryTree.yieldHasWord());
        }
        // Timing.tick("Done with pcfg phase.");
      }
      if (op.doDep) {
        dparser.parse(binaryTree.yieldHasWord());
        // Timing.tick("Done with dependency phase.");
      }
      boolean bothPassed = false;
      if (op.doPCFG && op.doDep) {
        bothPassed = bparser.parse(binaryTree.yieldHasWord());
        // Timing.tick("Done with combination phase.");
      }
      long timeMil2 = System.currentTimeMillis();
      long elapsed = timeMil2 - timeMil1;
      System.err.println("Time: " + ((int) (elapsed / 100)) / 10.00 + " sec.");
      // System.out.println("PCFG Best Parse:");
      Tree tree2b = null;
      Tree tree2 = null;
      // System.out.println("Got full best parse...");
      if (op.doPCFG) {
        tree2b = parser.getBestParse();
        tree2 = debinarizer.transformTree(tree2b);
      }
      // System.out.println("Debinarized parse...");
      // tree2.pennPrint();
      // System.out.println("DepG Best Parse:");
      Tree tree3 = null;
      Tree tree3db = null;
      if (op.doDep) {
        tree3 = dparser.getBestParse();
        // was: but wrong Tree tree3db = debinarizer.transformTree(tree2);
        tree3db = debinarizer.transformTree(tree3);
        tree3.pennPrint(pw);
      }
      // tree.pennPrint();
      // ((Tree)binaryTrainTrees.get(tNum)).pennPrint();
      // System.out.println("Combo Best Parse:");
      Tree tree4 = null;
      if (op.doPCFG && op.doDep) {
        try {
          tree4 = bparser.getBestParse();
          if (tree4 == null) {
            tree4 = tree2b;
          }
        } catch (NullPointerException e) {
          System.err.println("Blocked, using PCFG parse!");
          tree4 = tree2b;
        }
      }
      if (op.doPCFG && !bothPassed) {
        tree4 = tree2b;
      }
      // tree4.pennPrint();
      if (op.doDep) {
        depDE.evaluate(tree3, binaryTree, pw);
        depTE.evaluate(tree3db, tree, pw);
      }
      TreeTransformer tc = op.tlpParams.collinizer();
      TreeTransformer tcEvalb = op.tlpParams.collinizerEvalb();
      if (op.doPCFG) {
        // System.out.println("XXXX Best PCFG was: ");
        // tree2.pennPrint();
        // System.out.println("XXXX Transformed best PCFG is: ");
        // tc.transformTree(tree2).pennPrint();
        // System.out.println("True Best Parse:");
        // tree.pennPrint();
        // tc.transformTree(tree).pennPrint();
        pcfgPE.evaluate(tc.transformTree(tree2), tc.transformTree(tree), pw);
        pcfgCB.evaluate(tc.transformTree(tree2), tc.transformTree(tree), pw);
        Tree tree4b = null;
        if (op.doDep) {
          comboDE.evaluate((bothPassed ? tree4 : tree3), binaryTree, pw);
          tree4b = tree4;
          tree4 = debinarizer.transformTree(tree4);
          if (op.nodePrune) {
            NodePruner np = new NodePruner(parser, debinarizer);
            tree4 = np.prune(tree4);
          }
          // tree4.pennPrint();
          comboPE.evaluate(tc.transformTree(tree4), tc.transformTree(tree), pw);
        }
        // pcfgTE.evaluate(tree2, tree);
        pcfgTE.evaluate(tcEvalb.transformTree(tree2), tcEvalb.transformTree(tree), pw);
        pcfgTEnoPunct.evaluate(tc.transformTree(tree2), tc.transformTree(tree), pw);

        if (op.doDep) {
          comboTE.evaluate(tcEvalb.transformTree(tree4), tcEvalb.transformTree(tree), pw);
          comboTEnoPunct.evaluate(tc.transformTree(tree4), tc.transformTree(tree), pw);
        }
        System.out.println("PCFG only: " + parser.scoreBinarizedTree(tree2b, 0));

        // tc.transformTree(tree2).pennPrint();
        tree2.pennPrint(pw);

        if (op.doDep) {
          System.out.println("Combo: " + parser.scoreBinarizedTree(tree4b, 0));
          // tc.transformTree(tree4).pennPrint(pw);
          tree4.pennPrint(pw);
        }
        System.out.println("Correct:" + parser.scoreBinarizedTree(binaryTree, 0));
        /*
        if (parser.scoreBinarizedTree(tree2b,true) < parser.scoreBinarizedTree(binaryTree,true)) {
          System.out.println("SCORE INVERSION");
          parser.validateBinarizedTree(binaryTree,0);
        }
        */
        tree.pennPrint(pw);
      } // end if doPCFG

      if (op.testOptions.evalb) {
        if (op.doPCFG && op.doDep) {
          EvalbFormatWriter.writeEVALBline(
              tcEvalb.transformTree(tree), tcEvalb.transformTree(tree4));
        } else if (op.doPCFG) {
          EvalbFormatWriter.writeEVALBline(
              tcEvalb.transformTree(tree), tcEvalb.transformTree(tree2));
        } else if (op.doDep) {
          EvalbFormatWriter.writeEVALBline(
              tcEvalb.transformTree(tree), tcEvalb.transformTree(tree3db));
        }
      }
    } // end for each tree in test treebank

    if (op.testOptions.evalb) {
      EvalbFormatWriter.closeEVALBfiles();
    }

    // op.testOptions.display();
    if (op.doPCFG) {
      pcfgPE.display(false, pw);
      System.out.println("Grammar size: " + stateIndex.size());
      pcfgCB.display(false, pw);
      if (op.doDep) {
        comboPE.display(false, pw);
      }
      pcfgTE.display(false, pw);
      pcfgTEnoPunct.display(false, pw);
      if (op.doDep) {
        comboTE.display(false, pw);
        comboTEnoPunct.display(false, pw);
      }
    }
    if (op.doDep) {
      depTE.display(false, pw);
      depDE.display(false, pw);
    }
    if (op.doPCFG && op.doDep) {
      comboDE.display(false, pw);
    }
    // pcfgPE.printGoodBad();
  }
Example #5
0
  /**
   * Usage: java edu.stanford.nlp.trees.tregex.tsurgeon.Tsurgeon [-s] -treeFile file-with-trees [-po
   * matching-pattern operation] operation-file-1 operation-file-2 ... operation-file-n
   *
   * <h4>Arguments:</h4>
   *
   * Each argument should be the name of a transformation file that contains a list of pattern and
   * transformation operation list pairs. That is, it is a sequence of pairs of a {@link
   * TregexPattern} pattern on one or more lines, then a blank line (empty or whitespace), then a
   * list of transformation operations one per line (as specified by <b>Legal operation syntax</b>
   * below) to apply when the pattern is matched, and then another blank line (empty or whitespace).
   * Note the need for blank lines: The code crashes if they are not present as separators (although
   * the blank line at the end of the file can be omitted). The script file can include comment
   * lines, either whole comment lines or trailing comments introduced by %, which extend to the end
   * of line. A needed percent mark can be escaped by a preceding backslash.
   *
   * <p>For example, if you want to excise an SBARQ node whenever it is the parent of an SQ node,
   * and relabel the SQ node to S, your transformation file would look like this:
   *
   * <blockquote>
   *
   * <code>
   *    SBARQ=n1 &lt; SQ=n2<br>
   *    <br>
   *    excise n1 n1<br>
   *    relabel n2 S
   * </code>
   *
   * </blockquote>
   *
   * <p>
   *
   * <h4>Options:</h4>
   *
   * <ul>
   *   <li><code>-treeFile &#60;filename&#62;</code> specify the name of the file that has the trees
   *       you want to transform.
   *   <li><code>-po &#60;matchPattern&#62; &#60;operation&#62;</code> Apply a single operation to
   *       every tree using the specified match pattern and the specified operation. Use this option
   *       when you want to quickly try the effect of one pattern/surgery combination, and are too
   *       lazy to write a transformation file.
   *   <li><code>-s</code> Print each output tree on one line (default is pretty-printing).
   *   <li><code>-m</code> For every tree that had a matching pattern, print "before" (prepended as
   *       "Operated on:") and "after" (prepended as "Result:"). Unoperated trees just pass through
   *       the transducer as usual.
   *   <li><code>-encoding X</code> Uses character set X for input and output of trees.
   *   <li><code>-macros &#60;filename&#62;</code> A file of macros to use on the tregex pattern.
   *       Macros should be one per line, with original and replacement separated by tabs.
   *   <li><code>-hf &lt;headfinder-class-name&gt;</code> use the specified {@link HeadFinder} class
   *       to determine headship relations.
   *   <li><code>-hfArg &lt;string&gt;</code> pass a string argument in to the {@link HeadFinder}
   *       class's constructor. <code>-hfArg</code> can be used multiple times to pass in multiple
   *       arguments.
   *   <li><code>-trf &lt;TreeReaderFactory-class-name&gt;</code> use the specified {@link
   *       TreeReaderFactory} class to read trees from files.
   * </ul>
   *
   * <h4>Legal operation syntax:</h4>
   *
   * <ul>
   *   <li><code>delete &#60;name&#62;</code> deletes the node and everything below it.
   *   <li><code>prune &#60;name&#62;</code> Like delete, but if, after the pruning, the parent has
   *       no children anymore, the parent is pruned too. Pruning continues to affect all ancestors
   *       until one is found with remaining children. This may result in a null tree.
   *   <li><code>excise &#60;name1&#62; &#60;name2&#62;</code> The name1 node should either dominate
   *       or be the same as the name2 node. This excises out everything from name1 to name2. All
   *       the children of name2 go into the parent of name1, where name1 was.
   *   <li><code>relabel &#60;name&#62; &#60;new-label&#62;</code> Relabels the node to have the new
   *       label. <br>
   *       There are three possible forms: <br>
   *       <code>relabel nodeX VP</code> - for changing a node label to an alphanumeric string <br>
   *       <code>relabel nodeX /''/</code> - for relabeling a node to something that isn't a valid
   *       identifier without quoting <br>
   *       <code>relabel nodeX /^VB(.*)$/verb\\/$1/</code> - for regular expression based
   *       relabeling. In this case, all matches of the regular expression against the node label
   *       are replaced with the replacement String. This has the semantics of Java/Perl's
   *       replaceAll: you may use capturing groups and put them in replacements with $n. For
   *       example, if the pattern is /foo/bar/ and the node matched is "foo", the replaceAll
   *       semantics result in "barbar". If the pattern is /^foo(.*)$/bar$1/ and node matched is
   *       "foofoo", relabel will result in "barfoo". <br>
   *       When using the regex replacement method, you can also use the sequences ={node} and
   *       %{var} in the replacement string to use captured nodes or variable strings in the
   *       replacement string. For example, if the Tregex pattern was "duck=bar" and the relabel is
   *       /foo/={bar}/, "foofoo" will be replaced with "duckduck". <br>
   *       To concatenate two nodes named in the tregex pattern, for example, you can use the
   *       pattern /^.*$/={foo}={bar}/. Note that the ^.*$ is necessary to make sure the regex
   *       pattern only matches and replaces once on the entire node name. <br>
   *       To get an "=" or a "%" in the replacement, using \ escaping. Also, as in the example you
   *       can escape a slash in the middle of the second and third forms with \\/ and \\\\. <br>
   *   <li><code>insert &#60;name&#62; &#60;position&#62;</code> or <code>
   *       insert &lt;tree&gt; &#60;position&#62;</code> inserts the named node or tree into the
   *       position specified.
   *   <li><code>move &#60;name&#62; &#60;position&#62;</code> moves the named node into the
   *       specified position.
   *       <p>Right now the only ways to specify position are:
   *       <p><code>$+ &#60;name&#62;</code> the left sister of the named node<br>
   *       <code>$- &#60;name&#62;</code> the right sister of the named node<br>
   *       <code>&gt;i &#60;name&#62;</code> the i_th daughter of the named node<br>
   *       <code>&gt;-i &#60;name&#62;</code> the i_th daughter, counting from the right, of the
   *       named node.
   *   <li><code>replace &#60;name1&#62; &#60;name2&#62;</code> deletes name1 and inserts a copy of
   *       name2 in its place.
   *   <li><code>replace &#60;name&#62; &#60;tree&#62; &#60;tree2&#62;...</code> deletes name and
   *       inserts the new tree(s) in its place. If more than one replacement tree is given, each of
   *       the new subtrees will be added in order where the old tree was. Multiple subtrees at the
   *       root is an illegal operation and will throw an exception.
   *   <li>{@code createSubtree <new-label> <name1> [<name2>]} Create a subtree out of all the nodes
   *       from {@code <name1>} through {@code <name2>} and puts the new subtree where that span
   *       used to be. To limit the operation to just one node, elide {@code <name2>}.
   *   <li><code>adjoin &#60;auxiliary_tree&#62; &lt;name&gt;</code> Adjoins the specified auxiliary
   *       tree into the named node. The daughters of the target node will become the daughters of
   *       the foot of the auxiliary tree.
   *   <li><code>adjoinH &#60;auxiliary_tree&#62; &lt;name&gt;</code> Similar to adjoin, but
   *       preserves the target node and makes it the root of &lt;tree&gt;. (It is still accessible
   *       as <code>name</code>. The root of the auxiliary tree is ignored.)
   *   <li><code>adjoinF &#60;auxiliary_tree&#62; &lt;name&gt;</code> Similar to adjoin, but
   *       preserves the target node and makes it the foot of &lt;tree&gt;. (It is still accessible
   *       as <code>name</code>, and retains its status as parent of its children. The root of the
   *       auxiliary tree is ignored.)
   *   <li>
   *   <dt><code>coindex &#60;name1&#62; &#60;name2&#62; ... &#60;nameM&#62; </code> Puts a (Penn
   *       Treebank style) coindexation suffix of the form "-N" on each of nodes name_1 through
   *       name_m. The value of N will be automatically generated in reference to the existing
   *       coindexations in the tree, so that there is never an accidental clash of indices across
   *       things that are not meant to be coindexed.
   * </ul>
   *
   * <p>In the context of <code>adjoin</code>, <code>adjoinH</code>, and <code>adjoinF</code>, an
   * auxiliary tree is a tree in Penn Treebank format with <code>@</code> on exactly one of the
   * leaves denoting the foot of the tree. The operations which use the foot use the labeled node.
   * For example: <br>
   * Tsurgeon: <code>adjoin (FOO (BAR@)) foo</code> <br>
   * Tregex: <code>B=foo</code> <br>
   * Input: <code>(A (B 1 2))</code> Output: <code>(A (FOO (BAR 1 2)))</code>
   *
   * <p>Tsurgeon applies the same operation to the same tree for as long as the given tregex
   * operation matches. This means that infinite loops are very easy to cause. One common situation
   * where this comes up is with an insert operation will repeats infinitely many times unless you
   * add an expression to the tregex that matches against the inserted pattern. For example, this
   * pattern will infinite loop:
   *
   * <blockquote>
   *
   * <code>
   *   TregexPattern tregex = TregexPattern.compile("S=node &lt;&lt; NP"); <br>
   *   TsurgeonPattern tsurgeon = Tsurgeon.parseOperation("insert (NP foo) &gt;-1 node");
   * </code>
   *
   * </blockquote>
   *
   * This pattern, though, will terminate:
   *
   * <blockquote>
   *
   * <code>
   *   TregexPattern tregex = TregexPattern.compile("S=node &lt;&lt; NP !&lt;&lt; foo"); <br>
   *   TsurgeonPattern tsurgeon = Tsurgeon.parseOperation("insert (NP foo) &gt;-1 node");
   * </code>
   *
   * </blockquote>
   *
   * <p>Tsurgeon has (very) limited support for conditional statements. If a pattern is prefaced
   * with <code>if exists &lt;name&gt;</code>, the rest of the pattern will only execute if the
   * named node was found in the corresponding TregexMatcher.
   *
   * @param args a list of names of files each of which contains a single tregex matching pattern
   *     plus a list, one per line, of transformation operations to apply to the matched pattern.
   * @throws Exception If an I/O or pattern syntax error
   */
  public static void main(String[] args) throws Exception {
    String headFinderClassName = null;
    String headFinderOption = "-hf";
    String[] headFinderArgs = null;
    String headFinderArgOption = "-hfArg";
    String encoding = "UTF-8";
    String encodingOption = "-encoding";
    if (args.length == 0) {
      System.err.println(
          "Usage: java edu.stanford.nlp.trees.tregex.tsurgeon.Tsurgeon [-s] -treeFile <file-with-trees> [-po <matching-pattern> <operation>] <operation-file-1> <operation-file-2> ... <operation-file-n>");
      System.exit(0);
    }
    String treePrintFormats;
    String singleLineOption = "-s";
    String verboseOption = "-v";
    String matchedOption =
        "-m"; // if set, then print original form of trees that are matched & thus operated on
    String patternOperationOption = "-po";
    String treeFileOption = "-treeFile";
    String trfOption = "-trf";
    String macroOption = "-macros";
    String macroFilename = "";
    Map<String, Integer> flagMap = Generics.newHashMap();
    flagMap.put(patternOperationOption, 2);
    flagMap.put(treeFileOption, 1);
    flagMap.put(trfOption, 1);
    flagMap.put(singleLineOption, 0);
    flagMap.put(encodingOption, 1);
    flagMap.put(headFinderOption, 1);
    flagMap.put(macroOption, 1);
    Map<String, String[]> argsMap = StringUtils.argsToMap(args, flagMap);
    args = argsMap.get(null);

    if (argsMap.containsKey(headFinderOption))
      headFinderClassName = argsMap.get(headFinderOption)[0];
    if (argsMap.containsKey(headFinderArgOption)) headFinderArgs = argsMap.get(headFinderArgOption);
    if (argsMap.containsKey(verboseOption)) verbose = true;
    if (argsMap.containsKey(singleLineOption)) treePrintFormats = "oneline,";
    else treePrintFormats = "penn,";
    if (argsMap.containsKey(encodingOption)) encoding = argsMap.get(encodingOption)[0];
    if (argsMap.containsKey(macroOption)) macroFilename = argsMap.get(macroOption)[0];

    TreePrint tp = new TreePrint(treePrintFormats, new PennTreebankLanguagePack());
    PrintWriter pwOut = new PrintWriter(new OutputStreamWriter(System.out, encoding), true);

    TreeReaderFactory trf;
    if (argsMap.containsKey(trfOption)) {
      String trfClass = argsMap.get(trfOption)[0];
      trf = ReflectionLoading.loadByReflection(trfClass);
    } else {
      trf = new TregexPattern.TRegexTreeReaderFactory();
    }

    Treebank trees = new DiskTreebank(trf, encoding);
    if (argsMap.containsKey(treeFileOption)) {
      trees.loadPath(argsMap.get(treeFileOption)[0]);
    }
    List<Pair<TregexPattern, TsurgeonPattern>> ops =
        new ArrayList<Pair<TregexPattern, TsurgeonPattern>>();

    TregexPatternCompiler compiler;
    if (headFinderClassName == null) {
      compiler = new TregexPatternCompiler();
    } else {
      HeadFinder hf;
      if (headFinderArgs == null) {
        hf = ReflectionLoading.loadByReflection(headFinderClassName);
      } else {
        hf = ReflectionLoading.loadByReflection(headFinderClassName, (Object[]) headFinderArgs);
      }
      compiler = new TregexPatternCompiler(hf);
    }
    Macros.addAllMacros(compiler, macroFilename, encoding);
    if (argsMap.containsKey(patternOperationOption)) {
      TregexPattern matchPattern = compiler.compile(argsMap.get(patternOperationOption)[0]);
      TsurgeonPattern p = parseOperation(argsMap.get(patternOperationOption)[1]);
      ops.add(new Pair<TregexPattern, TsurgeonPattern>(matchPattern, p));
    } else {
      for (String arg : args) {
        List<Pair<TregexPattern, TsurgeonPattern>> pairs =
            getOperationsFromFile(arg, encoding, compiler);
        for (Pair<TregexPattern, TsurgeonPattern> pair : pairs) {
          if (verbose) {
            System.err.println(pair.second());
          }
          ops.add(pair);
        }
      }
    }

    for (Tree t : trees) {
      Tree original = t.deepCopy();
      Tree result = processPatternsOnTree(ops, t);
      if (argsMap.containsKey(matchedOption) && matchedOnTree) {
        pwOut.println("Operated on: ");
        displayTree(original, tp, pwOut);
        pwOut.println("Result: ");
      }
      displayTree(result, tp, pwOut);
    }
  }
  /**
   * Run the Evalb scoring metric on guess/gold input. The default language is English.
   *
   * @param args
   */
  public static void main(String[] args) {
    TreebankLangParserParams tlpp = new EnglishTreebankParserParams();
    int maxGoldYield = Integer.MAX_VALUE;
    boolean VERBOSE = false;
    String encoding = "UTF-8";

    String guessFile = null;
    String goldFile = null;

    Map<String, String[]> argsMap = StringUtils.argsToMap(args, optionArgDefs);

    for (Map.Entry<String, String[]> opt : argsMap.entrySet()) {
      if (opt.getKey() == null) continue;
      if (opt.getKey().equals("-l")) {
        Language lang = Language.valueOf(opt.getValue()[0].trim());
        tlpp = lang.params;

      } else if (opt.getKey().equals("-y")) {
        maxGoldYield = Integer.parseInt(opt.getValue()[0].trim());

      } else if (opt.getKey().equals("-v")) {
        VERBOSE = true;

      } else if (opt.getKey().equals("-e")) {
        encoding = opt.getValue()[0];

      } else {
        System.err.println(usage.toString());
        System.exit(-1);
      }

      // Non-option arguments located at key null
      String[] rest = argsMap.get(null);
      if (rest == null || rest.length < minArgs) {
        System.err.println(usage.toString());
        System.exit(-1);
      }
      goldFile = rest[0];
      guessFile = rest[1];
    }

    tlpp.setInputEncoding(encoding);
    final PrintWriter pwOut = tlpp.pw();

    final Treebank guessTreebank = tlpp.diskTreebank();
    guessTreebank.loadPath(guessFile);
    pwOut.println("GUESS TREEBANK:");
    pwOut.println(guessTreebank.textualSummary());

    final Treebank goldTreebank = tlpp.diskTreebank();
    goldTreebank.loadPath(goldFile);
    pwOut.println("GOLD TREEBANK:");
    pwOut.println(goldTreebank.textualSummary());

    final UnlabeledAttachmentEval metric =
        new UnlabeledAttachmentEval("UAS LP/LR", true, tlpp.headFinder());

    final TreeTransformer tc = tlpp.collinizer();

    // The evalb ref implementation assigns status for each tree pair as follows:
    //
    //   0 - Ok (yields match)
    //   1 - length mismatch
    //   2 - null parse e.g. (()).
    //
    // In the cases of 1,2, evalb does not include the tree pair in the LP/LR computation.
    final Iterator<Tree> goldItr = goldTreebank.iterator();
    final Iterator<Tree> guessItr = guessTreebank.iterator();
    int goldLineId = 0;
    int guessLineId = 0;
    int skippedGuessTrees = 0;
    while (guessItr.hasNext() && goldItr.hasNext()) {
      Tree guessTree = guessItr.next();
      List<? extends Label> guessYield = guessTree.yield();
      guessLineId++;

      Tree goldTree = goldItr.next();
      List<? extends Label> goldYield = goldTree.yield();
      goldLineId++;

      // Check that we should evaluate this tree
      if (goldYield.size() > maxGoldYield) {
        skippedGuessTrees++;
        continue;
      }

      // Only trees with equal yields can be evaluated
      if (goldYield.size() != guessYield.size()) {
        pwOut.printf(
            "Yield mismatch gold: %d tokens vs. guess: %d tokens (lines: gold %d guess %d)%n",
            goldYield.size(), guessYield.size(), goldLineId, guessLineId);
        skippedGuessTrees++;
        continue;
      }

      final Tree evalGuess = tc.transformTree(guessTree);
      evalGuess.indexLeaves(true);
      final Tree evalGold = tc.transformTree(goldTree);
      evalGold.indexLeaves(true);

      metric.evaluate(evalGuess, evalGold, ((VERBOSE) ? pwOut : null));
    }

    if (guessItr.hasNext() || goldItr.hasNext()) {
      System.err.printf(
          "Guess/gold files do not have equal lengths (guess: %d gold: %d)%n.",
          guessLineId, goldLineId);
    }

    pwOut.println(
        "================================================================================");
    if (skippedGuessTrees != 0)
      pwOut.printf("%s %d guess trees\n", "Unable to evaluate", skippedGuessTrees);
    metric.display(true, pwOut);

    pwOut.println();
    pwOut.close();
  }
Example #7
0
  /** Execute with no arguments for usage. */
  public static void main(String[] args) {

    if (!validateCommandLine(args)) {
      System.err.println(USAGE);
      System.exit(-1);
    }

    final TreebankLangParserParams tlpp = LANGUAGE.params;
    final PrintWriter pwOut = tlpp.pw();

    final Treebank guessTreebank = tlpp.diskTreebank();
    guessTreebank.loadPath(guessFile);
    pwOut.println("GUESS TREEBANK:");
    pwOut.println(guessTreebank.textualSummary());

    final Treebank goldTreebank = tlpp.diskTreebank();
    goldTreebank.loadPath(goldFile);
    pwOut.println("GOLD TREEBANK:");
    pwOut.println(goldTreebank.textualSummary());

    final LeafAncestorEval metric = new LeafAncestorEval("LeafAncestor");

    final TreeTransformer tc = tlpp.collinizer();

    // The evalb ref implementation assigns status for each tree pair as follows:
    //
    //   0 - Ok (yields match)
    //   1 - length mismatch
    //   2 - null parse e.g. (()).
    //
    // In the cases of 1,2, evalb does not include the tree pair in the LP/LR computation.
    final Iterator<Tree> goldItr = goldTreebank.iterator();
    final Iterator<Tree> guessItr = guessTreebank.iterator();
    int goldLineId = 0;
    int guessLineId = 0;
    int skippedGuessTrees = 0;
    while (guessItr.hasNext() && goldItr.hasNext()) {
      Tree guessTree = guessItr.next();
      List<? extends Label> guessYield = guessTree.yield();
      guessLineId++;

      Tree goldTree = goldItr.next();
      List<? extends Label> goldYield = goldTree.yield();
      goldLineId++;

      // Check that we should evaluate this tree
      if (goldYield.size() > MAX_GOLD_YIELD) {
        skippedGuessTrees++;
        continue;
      }

      // Only trees with equal yields can be evaluated
      if (goldYield.size() != guessYield.size()) {
        pwOut.printf(
            "Yield mismatch gold: %d tokens vs. guess: %d tokens (lines: gold %d guess %d)%n",
            goldYield.size(), guessYield.size(), goldLineId, guessLineId);
        skippedGuessTrees++;
        continue;
      }

      final Tree evalGuess = tc.transformTree(guessTree);
      final Tree evalGold = tc.transformTree(goldTree);

      metric.evaluate(evalGuess, evalGold, ((VERBOSE) ? pwOut : null));
    }

    if (guessItr.hasNext() || goldItr.hasNext()) {
      System.err.printf(
          "Guess/gold files do not have equal lengths (guess: %d gold: %d)%n.",
          guessLineId, goldLineId);
    }

    pwOut.println(
        "================================================================================");
    if (skippedGuessTrees != 0)
      pwOut.printf("%s %d guess trees%n", "Unable to evaluate", skippedGuessTrees);
    metric.display(true, pwOut);
    pwOut.close();
  }
  /** @param args */
  public static void main(String[] args) {
    if (args.length != 3) {
      System.err.printf(
          "Usage: java %s language filename features%n",
          TreebankFactoredLexiconStats.class.getName());
      System.exit(-1);
    }

    Language language = Language.valueOf(args[0]);
    TreebankLangParserParams tlpp = language.params;
    if (language.equals(Language.Arabic)) {
      String[] options = {"-arabicFactored"};
      tlpp.setOptionFlag(options, 0);
    } else {
      String[] options = {"-frenchFactored"};
      tlpp.setOptionFlag(options, 0);
    }
    Treebank tb = tlpp.diskTreebank();
    tb.loadPath(args[1]);

    MorphoFeatureSpecification morphoSpec =
        language.equals(Language.Arabic)
            ? new ArabicMorphoFeatureSpecification()
            : new FrenchMorphoFeatureSpecification();

    String[] features = args[2].trim().split(",");
    for (String feature : features) {
      morphoSpec.activate(MorphoFeatureType.valueOf(feature));
    }

    // Counters
    Counter<String> wordTagCounter = new ClassicCounter<>(30000);
    Counter<String> morphTagCounter = new ClassicCounter<>(500);
    //    Counter<String> signatureTagCounter = new ClassicCounter<String>();
    Counter<String> morphCounter = new ClassicCounter<>(500);
    Counter<String> wordCounter = new ClassicCounter<>(30000);
    Counter<String> tagCounter = new ClassicCounter<>(300);

    Counter<String> lemmaCounter = new ClassicCounter<>(25000);
    Counter<String> lemmaTagCounter = new ClassicCounter<>(25000);

    Counter<String> richTagCounter = new ClassicCounter<>(1000);

    Counter<String> reducedTagCounter = new ClassicCounter<>(500);

    Counter<String> reducedTagLemmaCounter = new ClassicCounter<>(500);

    Map<String, Set<String>> wordLemmaMap = Generics.newHashMap();

    TwoDimensionalIntCounter<String, String> lemmaReducedTagCounter =
        new TwoDimensionalIntCounter<>(30000);
    TwoDimensionalIntCounter<String, String> reducedTagTagCounter =
        new TwoDimensionalIntCounter<>(500);
    TwoDimensionalIntCounter<String, String> tagReducedTagCounter =
        new TwoDimensionalIntCounter<>(300);

    int numTrees = 0;
    for (Tree tree : tb) {
      for (Tree subTree : tree) {
        if (!subTree.isLeaf()) {
          tlpp.transformTree(subTree, tree);
        }
      }
      List<Label> pretermList = tree.preTerminalYield();
      List<Label> yield = tree.yield();
      assert yield.size() == pretermList.size();

      int yieldLen = yield.size();
      for (int i = 0; i < yieldLen; ++i) {
        String tag = pretermList.get(i).value();

        String word = yield.get(i).value();
        String morph = ((CoreLabel) yield.get(i)).originalText();

        // Note: if there is no lemma, then we use the surface form.
        Pair<String, String> lemmaTag = MorphoFeatureSpecification.splitMorphString(word, morph);
        String lemma = lemmaTag.first();
        String richTag = lemmaTag.second();

        // WSGDEBUG
        if (tag.contains("MW")) lemma += "-MWE";

        lemmaCounter.incrementCount(lemma);
        lemmaTagCounter.incrementCount(lemma + tag);

        richTagCounter.incrementCount(richTag);

        String reducedTag = morphoSpec.strToFeatures(richTag).toString();
        reducedTagCounter.incrementCount(reducedTag);

        reducedTagLemmaCounter.incrementCount(reducedTag + lemma);

        wordTagCounter.incrementCount(word + tag);
        morphTagCounter.incrementCount(morph + tag);
        morphCounter.incrementCount(morph);
        wordCounter.incrementCount(word);
        tagCounter.incrementCount(tag);

        reducedTag = reducedTag.equals("") ? "NONE" : reducedTag;
        if (wordLemmaMap.containsKey(word)) {
          wordLemmaMap.get(word).add(lemma);
        } else {
          Set<String> lemmas = Generics.newHashSet(1);
          wordLemmaMap.put(word, lemmas);
        }
        lemmaReducedTagCounter.incrementCount(lemma, reducedTag);
        reducedTagTagCounter.incrementCount(lemma + reducedTag, tag);
        tagReducedTagCounter.incrementCount(tag, reducedTag);
      }
      ++numTrees;
    }

    // Barf...
    System.out.println("Language: " + language.toString());
    System.out.printf("#trees:\t%d%n", numTrees);
    System.out.printf("#tokens:\t%d%n", (int) wordCounter.totalCount());
    System.out.printf("#words:\t%d%n", wordCounter.keySet().size());
    System.out.printf("#tags:\t%d%n", tagCounter.keySet().size());
    System.out.printf("#wordTagPairs:\t%d%n", wordTagCounter.keySet().size());
    System.out.printf("#lemmas:\t%d%n", lemmaCounter.keySet().size());
    System.out.printf("#lemmaTagPairs:\t%d%n", lemmaTagCounter.keySet().size());
    System.out.printf("#feattags:\t%d%n", reducedTagCounter.keySet().size());
    System.out.printf("#feattag+lemmas:\t%d%n", reducedTagLemmaCounter.keySet().size());
    System.out.printf("#richtags:\t%d%n", richTagCounter.keySet().size());
    System.out.printf("#richtag+lemma:\t%d%n", morphCounter.keySet().size());
    System.out.printf("#richtag+lemmaTagPairs:\t%d%n", morphTagCounter.keySet().size());

    // Extra
    System.out.println("==================");
    StringBuilder sbNoLemma = new StringBuilder();
    StringBuilder sbMultLemmas = new StringBuilder();
    for (Map.Entry<String, Set<String>> wordLemmas : wordLemmaMap.entrySet()) {
      String word = wordLemmas.getKey();
      Set<String> lemmas = wordLemmas.getValue();
      if (lemmas.size() == 0) {
        sbNoLemma.append("NO LEMMAS FOR WORD: " + word + "\n");
        continue;
      }
      if (lemmas.size() > 1) {
        sbMultLemmas.append("MULTIPLE LEMMAS: " + word + " " + setToString(lemmas) + "\n");
        continue;
      }
      String lemma = lemmas.iterator().next();
      Set<String> reducedTags = lemmaReducedTagCounter.getCounter(lemma).keySet();
      if (reducedTags.size() > 1) {
        System.out.printf("%s --> %s%n", word, lemma);
        for (String reducedTag : reducedTags) {
          int count = lemmaReducedTagCounter.getCount(lemma, reducedTag);
          String posTags =
              setToString(reducedTagTagCounter.getCounter(lemma + reducedTag).keySet());
          System.out.printf("\t%s\t%d\t%s%n", reducedTag, count, posTags);
        }
        System.out.println();
      }
    }
    System.out.println("==================");
    System.out.println(sbNoLemma.toString());
    System.out.println(sbMultLemmas.toString());
    System.out.println("==================");
    List<String> tags = new ArrayList<>(tagReducedTagCounter.firstKeySet());
    Collections.sort(tags);
    for (String tag : tags) {
      System.out.println(tag);
      Set<String> reducedTags = tagReducedTagCounter.getCounter(tag).keySet();
      for (String reducedTag : reducedTags) {
        int count = tagReducedTagCounter.getCount(tag, reducedTag);
        //        reducedTag = reducedTag.equals("") ? "NONE" : reducedTag;
        System.out.printf("\t%s\t%d%n", reducedTag, count);
      }
      System.out.println();
    }
    System.out.println("==================");
  }