public String toString() { StringBuffer buf = new StringBuffer(); List<Node> variables = getVariableSource().getVariables(); buf.append("\n"); for (int i = 0; i < getNumVariables(); i++) { DiscreteVariable variable = (DiscreteVariable) variables.get(i); String name = variable.getName(); buf.append(name); for (int j = name.length(); j < 5; j++) { buf.append(" "); } buf.append("\t"); } for (int i = 0; i < getMaxNumCategories(); i++) { buf.append("\n"); for (int j = 0; j < getNumVariables(); j++) { if (i < getNumCategories(j)) { boolean allowed = isAllowed(j, i); buf.append(allowed ? "true" : "* ").append("\t"); } else { buf.append(" \t"); } } } return buf.toString(); }
private String reportIfDiscrete(Graph dag, DataSet dataSet) { List vars = dataSet.getVariables(); Map<String, DiscreteVariable> nodesToVars = new HashMap<String, DiscreteVariable>(); for (int i = 0; i < dataSet.getNumColumns(); i++) { DiscreteVariable var = (DiscreteVariable) vars.get(i); String name = var.getName(); Node node = new GraphNode(name); nodesToVars.put(node.getName(), var); } BayesPm bayesPm = new BayesPm(new Dag(dag)); List<Node> nodes = bayesPm.getDag().getNodes(); for (Node node : nodes) { Node var = nodesToVars.get(node.getName()); if (var instanceof DiscreteVariable) { DiscreteVariable var2 = nodesToVars.get(node.getName()); int numCategories = var2.getNumCategories(); List<String> categories = new ArrayList<String>(); for (int j = 0; j < numCategories; j++) { categories.add(var2.getCategory(j)); } bayesPm.setCategories(node, categories); } } BayesProperties properties = new BayesProperties(dataSet, dag); properties.setGraph(dag); NumberFormat nf = NumberFormat.getInstance(); nf.setMaximumFractionDigits(4); StringBuilder buf = new StringBuilder(); buf.append("\nP-value = ").append(properties.getLikelihoodRatioP()); buf.append("\nDf = ").append(properties.getPValueDf()); buf.append("\nChi square = ").append(nf.format(properties.getPValueChisq())); buf.append("\nBIC score = ").append(nf.format(properties.getBic())); buf.append("\n\nH0: Completely disconnected graph."); return buf.toString(); }
/** * This method takes an instantiated Bayes net (BayesIm) whose graph include all the variables * (observed and latent) and computes estimated counts using the data in the DataSet mixedData. * The counts that are estimated correspond to cells in the conditional probability tables of the * Bayes net. The outermost loop (indexed by j) is over the set of variables. If the variable has * no parents, each case in the dataset is examined and the count for the observed value of the * variables is increased by 1.0; if the value of the variable is missing the marginal * probabilities its values given the values of the variables that are available for that case are * used to increment the corresponding estimated counts. If a variable has parents then there is a * loop which steps through all possible sets of values of its parents. This loop is indexed by * the variable "row". Each case in the dataset is examined. It the variable and all its parents * have values in the case the corresponding estimated counts are incremented by 1.0. If the * variable or any of its parents have missing values, the joint marginal is computed for the * variable and the set of values of its parents corresponding to "row" and the corresponding * estimated counts are incremented by the appropriate probability. The estimated counts are * stored in the double[][][] array estimatedCounts. The count (possibly fractional) of the number * of times each combination of parent values occurs is stored in the double[][] array * estimatedCountsDenom. These two arrays are used to compute the estimated conditional * probabilities of the output Bayes net. */ private BayesIm expectation(BayesIm inputBayesIm) { // System.out.println("Entered method expectation."); int numCases = mixedData.getNumRows(); // StoredCellEstCounts estCounts = new StoredCellEstCounts(variables); int numVariables = allVariables.size(); RowSummingExactUpdater rseu = new RowSummingExactUpdater(inputBayesIm); for (int j = 0; j < numVariables; j++) { DiscreteVariable var = (DiscreteVariable) allVariables.get(j); String varName = var.getName(); Node varNode = graph.getNode(varName); int varIndex = inputBayesIm.getNodeIndex(varNode); int[] parentVarIndices = inputBayesIm.getParents(varIndex); // System.out.println("graph = " + graph); // for(int col = 0; col < var.getNumSplits(); col++) // System.out.println("Category " + col + " = " + var.getCategory(col)); // System.out.println("Updating estimated counts for node " + varName); // This segment is for variables with no parents: if (parentVarIndices.length == 0) { // System.out.println("No parents"); for (int col = 0; col < var.getNumCategories(); col++) { estimatedCounts[j][0][col] = 0.0; } for (int i = 0; i < numCases; i++) { // System.out.println("Case " + i); // If this case has a value for var if (mixedData.getInt(i, j) != -99) { estimatedCounts[j][0][mixedData.getInt(i, j)] += 1.0; // System.out.println("Adding 1.0 to " + varName + // " row 0 category " + mixedData[j][i]); } else { // find marginal probability, given obs data in this case, p(v=0) Evidence evidenceThisCase = Evidence.tautology(inputBayesIm); boolean existsEvidence = false; // Define evidence for updating by using the values of the other vars. for (int k = 0; k < numVariables; k++) { if (k == j) { continue; } Node otherVar = allVariables.get(k); if (mixedData.getInt(i, k) == -99) { continue; } existsEvidence = true; String otherVarName = otherVar.getName(); Node otherNode = graph.getNode(otherVarName); int otherIndex = inputBayesIm.getNodeIndex(otherNode); evidenceThisCase.getProposition().setCategory(otherIndex, mixedData.getInt(i, k)); } if (!existsEvidence) { continue; // No other variable contained useful data } rseu.setEvidence(evidenceThisCase); for (int m = 0; m < var.getNumCategories(); m++) { estimatedCounts[j][0][m] += rseu.getMarginal(varIndex, m); // System.out.println("Adding " + p + " to " + varName + // " row 0 category " + m); // find marginal probability, given obs data in this case, p(v=1) // estimatedCounts[j][0][1] += 0.5; } } } // Print estimated counts: // System.out.println("Estimated counts: "); // Print counts for each value of this variable with no parents. // for(int m = 0; m < var.getNumSplits(); m++) // System.out.print(" " + m + " " + estimatedCounts[j][0][m]); // System.out.println(); } else { // For variables with parents: int numRows = inputBayesIm.getNumRows(varIndex); for (int row = 0; row < numRows; row++) { int[] parValues = inputBayesIm.getParentValues(varIndex, row); estimatedCountsDenom[varIndex][row] = 0.0; for (int col = 0; col < var.getNumCategories(); col++) { estimatedCounts[varIndex][row][col] = 0.0; } for (int i = 0; i < numCases; i++) { // for a case where the parent values = parValues increment the estCount boolean parentMatch = true; for (int p = 0; p < parentVarIndices.length; p++) { if (parValues[p] != mixedData.getInt(i, parentVarIndices[p]) && mixedData.getInt(i, parentVarIndices[p]) != -99) { parentMatch = false; break; } } if (!parentMatch) { continue; // Not a matching case; go to next. } boolean parentMissing = false; for (int parentVarIndice : parentVarIndices) { if (mixedData.getInt(i, parentVarIndice) == -99) { parentMissing = true; break; } } if (mixedData.getInt(i, j) != -99 && !parentMissing) { estimatedCounts[j][row][mixedData.getInt(i, j)] += 1.0; estimatedCountsDenom[j][row] += 1.0; continue; // Next case } // for a case with missing data (either var or one of its parents) // compute the joint marginal // distribution for var & this combination of values of its parents // and update the estCounts accordingly // To compute marginals create the evidence boolean existsEvidence = false; Evidence evidenceThisCase = Evidence.tautology(inputBayesIm); // "evidenceVars" not used. // List<String> evidenceVars = new LinkedList<String>(); // for (int k = 0; k < numVariables; k++) { // //if(k == j) continue; // Variable otherVar = allVariables.get(k); // if (mixedData.getInt(i, k) == -99) { // continue; // } // existsEvidence = true; // String otherVarName = otherVar.getName(); // Node otherNode = graph.getNode(otherVarName); // int otherIndex = inputBayesIm.getNodeIndex( // otherNode); // evidenceThisCase.getProposition().setCategory( // otherIndex, mixedData.getInt(i, k)); // evidenceVars.add(otherVarName); // } if (!existsEvidence) { continue; } rseu.setEvidence(evidenceThisCase); estimatedCountsDenom[j][row] += rseu.getJointMarginal(parentVarIndices, parValues); int[] parPlusChildIndices = new int[parentVarIndices.length + 1]; int[] parPlusChildValues = new int[parentVarIndices.length + 1]; parPlusChildIndices[0] = varIndex; for (int pc = 1; pc < parPlusChildIndices.length; pc++) { parPlusChildIndices[pc] = parentVarIndices[pc - 1]; parPlusChildValues[pc] = parValues[pc - 1]; } for (int m = 0; m < var.getNumCategories(); m++) { parPlusChildValues[0] = m; /* if(varName.equals("X1") && i == 0 ) { System.out.println("Calling getJointMarginal with parvalues"); for(int k = 0; k < parPlusChildIndices.length; k++) { int pIndex = parPlusChildIndices[k]; Node pNode = inputBayesIm.getNode(pIndex); String pName = pNode.getName(); System.out.println(pName + " " + parPlusChildValues[k]); } } */ /* if(varName.equals("X1") && i == 0 ) { System.out.println("Evidence = " + evidenceThisCase); //int[] vars = {l1Index, x1Index}; Node nodex1 = inputBayesIm.getNode("X1"); int x1Index = inputBayesIm.getNodeIndex(nodex1); Node nodel1 = inputBayesIm.getNode("L1"); int l1Index = inputBayesIm.getNodeIndex(nodel1); int[] vars = {l1Index, x1Index}; int[] vals = {0, 0}; double ptest = rseu.getJointMarginal(vars, vals); System.out.println("Joint marginal (X1=0, L1 = 0) = " + p); } */ estimatedCounts[j][row][m] += rseu.getJointMarginal(parPlusChildIndices, parPlusChildValues); // System.out.println("Case " + i + " parent values "); // for (int pp = 0; pp < parentVarIndices.length; pp++) { // Variable par = (Variable) allVariables.get(parentVarIndices[pp]); // System.out.print(" " + par.getName() + " " + parValues[pp]); // } // System.out.println(); // System.out.println("Adding " + p + " to " + varName + // " row " + row + " category " + m); } // } } // Print estimated counts: // System.out.println("Estimated counts: "); // System.out.println(" Parent values: "); // for (int i = 0; i < parentVarIndices.length; i++) { // Variable par = (Variable) allVariables.get(parentVarIndices[i]); // System.out.print(" " + par.getName() + " " + parValues[i] + " "); // } // System.out.println(); // for(int m = 0; m < var.getNumSplits(); m++) // System.out.print(" " + m + " " + estimatedCounts[j][row][m]); // System.out.println(); } } // else } // j < numVariables BayesIm outputBayesIm = new MlBayesIm(bayesPm); for (int j = 0; j < nodes.length; j++) { DiscreteVariable var = (DiscreteVariable) allVariables.get(j); String varName = var.getName(); Node varNode = graph.getNode(varName); int varIndex = inputBayesIm.getNodeIndex(varNode); // int[] parentVarIndices = inputBayesIm.getParents(varIndex); int numRows = inputBayesIm.getNumRows(j); // System.out.println("Conditional probabilities for variable " + varName); int numCols = inputBayesIm.getNumColumns(j); if (numRows == 1) { double sum = 0.0; for (int m = 0; m < numCols; m++) { sum += estimatedCounts[j][0][m]; } for (int m = 0; m < numCols; m++) { condProbs[j][0][m] = estimatedCounts[j][0][m] / sum; // System.out.print(" " + condProbs[j][0][m]); outputBayesIm.setProbability(varIndex, 0, m, condProbs[j][0][m]); } // System.out.println(); } else { for (int row = 0; row < numRows; row++) { // int[] parValues = inputBayesIm.getParentValues(varIndex, // row); // int numCols = inputBayesIm.getNumColumns(j); // for (int p = 0; p < parentVarIndices.length; p++) { // Variable par = (Variable) allVariables.get(parentVarIndices[p]); // System.out.print(" " + par.getName() + " " + parValues[p]); // } // double sum = 0.0; // for(int m = 0; m < numCols; m++) // sum += estimatedCounts[j][row][m]; for (int m = 0; m < numCols; m++) { if (estimatedCountsDenom[j][row] != 0.0) { condProbs[j][row][m] = estimatedCounts[j][row][m] / estimatedCountsDenom[j][row]; } else { condProbs[j][row][m] = Double.NaN; } // System.out.print(" " + condProbs[j][row][m]); outputBayesIm.setProbability(varIndex, row, m, condProbs[j][row][m]); } // System.out.println(); } } } return outputBayesIm; }
public final DataSet filter(DataSet dataSet) { // Why does it have to be discrete? Why can't we simply expand // whatever discrete columns are there and leave the continuous // ones untouched? jdramsey 7/4/2005 // if (!(dataSet.isDiscrete())) { // throw new IllegalArgumentException("Data set must be discrete."); // } List<Node> variables = new LinkedList<>(); // Add all of the variables to the new data set. for (int j = 0; j < dataSet.getNumColumns(); j++) { Node _var = dataSet.getVariable(j); if (!(_var instanceof DiscreteVariable)) { variables.add(_var); continue; } DiscreteVariable variable = (DiscreteVariable) _var; String oldName = variable.getName(); List<String> oldCategories = variable.getCategories(); List<String> newCategories = new LinkedList<>(oldCategories); String newCategory = "Missing"; int _j = 0; while (oldCategories.contains(newCategory)) { newCategory = "Missing" + (++_j); } newCategories.add(newCategory); String newName = oldName + "+"; DiscreteVariable newVariable = new DiscreteVariable(newName, newCategories); variables.add(newVariable); } DataSet newDataSet = new ColtDataSet(dataSet.getNumRows(), variables); // Copy old values to new data set, replacing missing values with new // "MissingValue" categories. for (int j = 0; j < dataSet.getNumColumns(); j++) { Node _var = dataSet.getVariable(j); if (_var instanceof ContinuousVariable) { for (int i = 0; i < dataSet.getNumRows(); i++) { newDataSet.setDouble(i, j, dataSet.getDouble(i, j)); } } else if (_var instanceof DiscreteVariable) { DiscreteVariable variable = (DiscreteVariable) _var; int numCategories = variable.getNumCategories(); for (int i = 0; i < dataSet.getNumRows(); i++) { int value = dataSet.getInt(i, j); if (value == DiscreteVariable.MISSING_VALUE) { newDataSet.setInt(i, j, numCategories); } else { newDataSet.setInt(i, j, value); } } } } return newDataSet; }