Example #1
0
  public static void main(String[] args) {
    List<String> classes = Arrays.asList(JTranscReflection.getAllClasses());
    System.out.println(classes.size() >= 2);
    System.out.println(classes.contains(JTranscSystemTest.class.getName()));
    System.out.println(classes.contains("com.donot.exists"));

    IntMap<Simple> intMap = IntMap.Utils.create();
    intMap.set(0, Simple.Utils.create());
    intMap.set(1, Simple.Utils.create());
    System.out.println(intMap.exists(0));
    System.out.println(intMap.has(1));
    System.out.println(intMap.exists(2));
    intMap.remove(1);
    System.out.println(intMap.has(1));
    intMap.get(0).flush();
  }
Example #2
0
  @Override
  public PersistentMap<Long, V> include(Long key, V value) {
    IntMap<MapEntry<Long, V>> im = getInner(key);
    MapEntry<Long, V> entry = new MapEntry<Long, V>(key, value);
    long newCount = count;
    int lo = Bits.lowWord(key);
    if (im == null) {
      im = IntMap.create(lo, entry);
      newCount += 1;
    } else {
      if (!im.containsKey(lo)) newCount++;
      im = im.include(lo, entry);
    }

    IntMap<IntMap<MapEntry<Long, V>>> newData = data.include(Bits.highWord(key), im);
    if (data == newData) return this;
    return new LongMap<V>(newData, newCount);
  }
Example #3
0
  /**
   * Analyzes the given method.
   *
   * @param c the class to which the method belongs.
   * @param m the method to be analyzed.
   * @return the symbolic state of the execution stack frame at each bytecode instruction of the
   *     method. The size of the returned array is equal to the number of instructions (and labels)
   *     of the method. A given frame is <tt>null</tt> if and only if the corresponding instruction
   *     cannot be reached (dead code).
   * @throws AnalyzerException if a problem occurs during the analysis.
   */
  public Frame[] analyze(final ClassNode c, final MethodNode m) throws AnalyzerException {
    n = m.instructions.size();
    indexes = new IntMap(2 * n);
    handlers = new List[n];
    frames = new Frame[n];
    subroutines = new Subroutine[n];
    queued = new boolean[n];
    queue = new int[n];
    top = 0;

    // computes instruction indexes
    for (int i = 0; i < n; ++i) {
      indexes.put(m.instructions.get(i), i);
    }

    // computes exception handlers for each instruction
    for (int i = 0; i < m.tryCatchBlocks.size(); ++i) {
      TryCatchBlockNode tcb = (TryCatchBlockNode) m.tryCatchBlocks.get(i);
      int begin = indexes.get(tcb.start);
      int end = indexes.get(tcb.end);
      for (int j = begin; j < end; ++j) {
        List insnHandlers = handlers[j];
        if (insnHandlers == null) {
          insnHandlers = new ArrayList();
          handlers[j] = insnHandlers;
        }
        insnHandlers.add(tcb);
      }
    }

    // initializes the data structures for the control flow analysis algorithm
    Frame current = newFrame(m.maxLocals, m.maxStack);
    Frame handler = newFrame(m.maxLocals, m.maxStack);
    Type[] args = Type.getArgumentTypes(m.desc);
    int local = 0;
    if ((m.access & ACC_STATIC) == 0) {
      Type ctype = Type.getType("L" + c.name + ";");
      current.setLocal(local++, interpreter.newValue(ctype));
    }
    for (int i = 0; i < args.length; ++i) {
      current.setLocal(local++, interpreter.newValue(args[i]));
      if (args[i].getSize() == 2) {
        current.setLocal(local++, interpreter.newValue(null));
      }
    }
    while (local < m.maxLocals) {
      current.setLocal(local++, interpreter.newValue(null));
    }
    merge(0, current, null);

    // control flow analysis
    while (top > 0) {
      int insn = queue[--top];
      Frame f = frames[insn];
      Subroutine subroutine = subroutines[insn];
      queued[insn] = false;

      try {
        Object o = m.instructions.get(insn);
        jsr = false;

        if (o instanceof Label) {
          merge(insn + 1, f, subroutine);
        } else {
          AbstractInsnNode insnNode = (AbstractInsnNode) o;
          int insnOpcode = insnNode.getOpcode();

          current.init(f).execute(insnNode, interpreter);
          subroutine = subroutine == null ? null : subroutine.copy();

          if (insnNode instanceof JumpInsnNode) {
            JumpInsnNode j = (JumpInsnNode) insnNode;
            if (insnOpcode != GOTO && insnOpcode != JSR) {
              merge(insn + 1, current, subroutine);
            }
            if (insnOpcode == JSR) {
              jsr = true;
              merge(indexes.get(j.label), current, new Subroutine(j.label, m.maxLocals, j));
            } else {
              merge(indexes.get(j.label), current, subroutine);
            }
          } else if (insnNode instanceof LookupSwitchInsnNode) {
            LookupSwitchInsnNode lsi = (LookupSwitchInsnNode) insnNode;
            merge(indexes.get(lsi.dflt), current, subroutine);
            for (int j = 0; j < lsi.labels.size(); ++j) {
              Label label = (Label) lsi.labels.get(j);
              merge(indexes.get(label), current, subroutine);
            }
          } else if (insnNode instanceof TableSwitchInsnNode) {
            TableSwitchInsnNode tsi = (TableSwitchInsnNode) insnNode;
            merge(indexes.get(tsi.dflt), current, subroutine);
            for (int j = 0; j < tsi.labels.size(); ++j) {
              Label label = (Label) tsi.labels.get(j);
              merge(indexes.get(label), current, subroutine);
            }
          } else if (insnOpcode == RET) {
            if (subroutine == null) {
              throw new AnalyzerException("RET instruction outside of a sub routine");
            } else {
              for (int i = 0; i < subroutine.callers.size(); ++i) {
                int caller = indexes.get(subroutine.callers.get(i));
                merge(caller + 1, frames[caller], current, subroutines[caller], subroutine.access);
              }
            }
          } else if (insnOpcode != ATHROW && (insnOpcode < IRETURN || insnOpcode > RETURN)) {
            if (subroutine != null) {
              if (insnNode instanceof VarInsnNode) {
                int var = ((VarInsnNode) insnNode).var;
                subroutine.access[var] = true;
                if (insnOpcode == LLOAD
                    || insnOpcode == DLOAD
                    || insnOpcode == LSTORE
                    || insnOpcode == DSTORE) {
                  subroutine.access[var + 1] = true;
                }
              } else if (insnNode instanceof IincInsnNode) {
                int var = ((IincInsnNode) insnNode).var;
                subroutine.access[var] = true;
              }
            }
            merge(insn + 1, current, subroutine);
          }
        }

        List insnHandlers = handlers[insn];
        if (insnHandlers != null) {
          for (int i = 0; i < insnHandlers.size(); ++i) {
            TryCatchBlockNode tcb = (TryCatchBlockNode) insnHandlers.get(i);
            Type type;
            if (tcb.type == null) {
              type = Type.getType("Ljava/lang/Throwable;");
            } else {
              type = Type.getType("L" + tcb.type + ";");
            }
            handler.init(f);
            handler.clearStack();
            handler.push(interpreter.newValue(type));
            merge(indexes.get(tcb.handler), handler, subroutine);
          }
        }
      } catch (Exception e) {
        throw new AnalyzerException("Error at instruction " + insn + ": " + e.getMessage());
      }
    }

    return frames;
  }
Example #4
0
 /**
  * Returns the index of the given instruction.
  *
  * @param insn a {@link Label} or {@link AbstractInsnNode} of the last recently analyzed method.
  * @return the index of the given instruction of the last recently analyzed method.
  */
 public int getIndex(final Object insn) {
   return indexes.get(insn);
 }