Ejemplo n.º 1
0
    /**
     * makes a copy of this GABitSet
     *
     * @return a copy of the object
     * @throws CloneNotSupportedException if something goes wrong
     */
    public Object clone() throws CloneNotSupportedException {
      GABitSet temp = new GABitSet();

      temp.setObjective(this.getObjective());
      temp.setFitness(this.getFitness());
      temp.setChromosome((BitSet) (this.m_chromosome.clone()));
      return temp;
      // return super.clone();
    }
Ejemplo n.º 2
0
  /**
   * evaluates an entire population. Population members are looked up in a hash table and if they
   * are not found then they are evaluated using ASEvaluator.
   *
   * @param ASEvaluator the subset evaluator to use for evaluating population members
   * @throws Exception if something goes wrong during evaluation
   */
  private void evaluatePopulation(SubsetEvaluator ASEvaluator) throws Exception {
    int i;
    double merit;

    for (i = 0; i < m_popSize; i++) {
      // if its not in the lookup table then evaluate and insert
      if (m_lookupTable.containsKey(m_population[i].getChromosome()) == false) {
        merit = ASEvaluator.evaluateSubset(m_population[i].getChromosome());
        m_population[i].setObjective(merit);
        m_lookupTable.put(m_population[i].getChromosome(), m_population[i]);
      } else {
        GABitSet temp = m_lookupTable.get(m_population[i].getChromosome());
        m_population[i].setObjective(temp.getObjective());
      }
    }
  }
Ejemplo n.º 3
0
  /**
   * Searches the attribute subset space using a genetic algorithm.
   *
   * @param ASEval the attribute evaluator to guide the search
   * @param data the training instances.
   * @return an array (not necessarily ordered) of selected attribute indexes
   * @throws Exception if the search can't be completed
   */
  @Override
  public int[] search(ASEvaluation ASEval, Instances data) throws Exception {

    m_best = null;
    m_generationReports = new StringBuffer();

    if (!(ASEval instanceof SubsetEvaluator)) {
      throw new Exception(ASEval.getClass().getName() + " is not a " + "Subset evaluator!");
    }

    if (ASEval instanceof UnsupervisedSubsetEvaluator) {
      m_hasClass = false;
    } else {
      m_hasClass = true;
      m_classIndex = data.classIndex();
    }

    SubsetEvaluator ASEvaluator = (SubsetEvaluator) ASEval;
    m_numAttribs = data.numAttributes();

    m_startRange.setUpper(m_numAttribs - 1);
    if (!(getStartSet().equals(""))) {
      m_starting = m_startRange.getSelection();
    }

    // initial random population
    m_lookupTable = new Hashtable<BitSet, GABitSet>(m_lookupTableSize);
    m_random = new Random(m_seed);
    m_population = new GABitSet[m_popSize];

    // set up random initial population
    initPopulation();
    evaluatePopulation(ASEvaluator);
    populationStatistics();
    scalePopulation();
    checkBest();
    m_generationReports.append(populationReport(0));

    boolean converged;
    for (int i = 1; i <= m_maxGenerations; i++) {
      generation();
      evaluatePopulation(ASEvaluator);
      populationStatistics();
      scalePopulation();
      // find the best pop member and check for convergence
      converged = checkBest();

      if ((i == m_maxGenerations) || ((i % m_reportFrequency) == 0) || (converged == true)) {
        m_generationReports.append(populationReport(i));
        if (converged == true) {
          break;
        }
      }
    }
    return attributeList(m_best.getChromosome());
  }
Ejemplo n.º 4
0
  /**
   * checks to see if any population members in the current population are better than the best
   * found so far. Also checks to see if the search has converged---that is there is no difference
   * in fitness between the best and worse population member
   *
   * @return true is the search has converged
   * @throws Exception if something goes wrong
   */
  private boolean checkBest() throws Exception {
    int i, count, lowestCount = m_numAttribs;
    double b = -Double.MAX_VALUE;
    GABitSet localbest = null;
    BitSet temp;
    boolean converged = false;
    int oldcount = Integer.MAX_VALUE;

    if (m_maxFitness - m_minFitness > 0) {
      // find the best in this population
      for (i = 0; i < m_popSize; i++) {
        if (m_population[i].getObjective() > b) {
          b = m_population[i].getObjective();
          localbest = m_population[i];
          oldcount = countFeatures(localbest.getChromosome());
        } else if (Utils.eq(m_population[i].getObjective(), b)) {
          // see if it contains fewer features
          count = countFeatures(m_population[i].getChromosome());
          if (count < oldcount) {
            b = m_population[i].getObjective();
            localbest = m_population[i];
            oldcount = count;
          }
        }
      }
    } else {
      // look for the smallest subset
      for (i = 0; i < m_popSize; i++) {
        temp = m_population[i].getChromosome();
        count = countFeatures(temp);
        ;

        if (count < lowestCount) {
          lowestCount = count;
          localbest = m_population[i];
          b = localbest.getObjective();
        }
      }
      converged = true;
    }

    // count the number of features in localbest
    count = 0;
    temp = localbest.getChromosome();
    count = countFeatures(temp);

    // compare to the best found so far
    if (m_best == null) {
      m_best = (GABitSet) localbest.clone();
      m_bestFeatureCount = count;
    } else if (b > m_best.getObjective()) {
      m_best = (GABitSet) localbest.clone();
      m_bestFeatureCount = count;
    } else if (Utils.eq(m_best.getObjective(), b)) {
      // see if the localbest has fewer features than the best so far
      if (count < m_bestFeatureCount) {
        m_best = (GABitSet) localbest.clone();
        m_bestFeatureCount = count;
      }
    }
    return converged;
  }