/** * Inserts mark-locals if necessary when changing a register. If the definition of {@code origReg} * is associated with a local variable, then insert a mark-local for {@code newReg} just below it. * We expect the definition of {@code origReg} to ultimately be removed by the dead code * eliminator * * @param origReg {@code non-null;} original register * @param newReg {@code non-null;} new register that will replace {@code origReg} */ private void fixLocalAssignment(RegisterSpec origReg, RegisterSpec newReg) { for (SsaInsn use : ssaMeth.getUseListForRegister(origReg.getReg())) { RegisterSpec localAssignment = use.getLocalAssignment(); if (localAssignment == null) { continue; } if (use.getResult() == null) { /* * This is a mark-local. it will be updated when all uses are * updated. */ continue; } LocalItem local = localAssignment.getLocalItem(); // Un-associate original use. use.setResultLocal(null); // Now add a mark-local to the new reg immediately after. newReg = newReg.withLocalItem(local); SsaInsn newInsn = SsaInsn.makeFromRop( new PlainInsn( Rops.opMarkLocal(newReg), SourcePosition.NO_INFO, null, RegisterSpecList.make(newReg)), use.getBlock()); ArrayList<SsaInsn> insns = use.getBlock().getInsns(); insns.add(insns.indexOf(use) + 1, newInsn); } }
/** * Processes a single block. * * @param blockIndex {@code >= 0;} block index of the block to process */ private void processBlock(int blockIndex) { RegisterSpecSet primaryState = resultInfo.mutableCopyOfStarts(blockIndex); SsaBasicBlock block = blocks.get(blockIndex); List<SsaInsn> insns = block.getInsns(); int insnSz = insns.size(); // The exit block has no insns and no successors if (blockIndex == method.getExitBlockIndex()) { return; } /* * We may have to treat the last instruction specially: If it * can (but doesn't always) throw, and the exception can be * caught within the same method, then we need to use the * state *before* executing it to be what is merged into * exception targets. */ SsaInsn lastInsn = insns.get(insnSz - 1); boolean hasExceptionHandlers = lastInsn.getOriginalRopInsn().getCatches().size() != 0; boolean canThrowDuringLastInsn = hasExceptionHandlers && (lastInsn.getResult() != null); int freezeSecondaryStateAt = insnSz - 1; RegisterSpecSet secondaryState = primaryState; /* * Iterate over the instructions, adding information for each place * that the active variable set changes. */ for (int i = 0; i < insnSz; i++) { if (canThrowDuringLastInsn && (i == freezeSecondaryStateAt)) { // Until this point, primaryState == secondaryState. primaryState.setImmutable(); primaryState = primaryState.mutableCopy(); } SsaInsn insn = insns.get(i); RegisterSpec result; result = insn.getLocalAssignment(); if (result == null) { // We may be nuking an existing local result = insn.getResult(); if (result != null && primaryState.get(result.getReg()) != null) { primaryState.remove(primaryState.get(result.getReg())); } continue; } result = result.withSimpleType(); RegisterSpec already = primaryState.get(result); /* * The equals() check ensures we only add new info if * the instruction causes a change to the set of * active variables. */ if (!result.equals(already)) { /* * If this insn represents a local moving from one register * to another, remove the association between the old register * and the local. */ RegisterSpec previous = primaryState.localItemToSpec(result.getLocalItem()); if (previous != null && (previous.getReg() != result.getReg())) { primaryState.remove(previous); } resultInfo.addAssignment(insn, result); primaryState.put(result); } } primaryState.setImmutable(); /* * Merge this state into the start state for each successor, * and update the work set where required (that is, in cases * where the start state for a block changes). */ IntList successors = block.getSuccessorList(); int succSz = successors.size(); int primarySuccessor = block.getPrimarySuccessorIndex(); for (int i = 0; i < succSz; i++) { int succ = successors.get(i); RegisterSpecSet state = (succ == primarySuccessor) ? primaryState : secondaryState; if (resultInfo.mergeStarts(succ, state)) { workSet.set(succ); } } }
/** * Sorts move instructions added via {@code addMoveToEnd} during phi removal so that results don't * overwrite sources that are used. For use after all phis have been removed and all calls to * addMoveToEnd() have been made. * * <p>This is necessary because copy-propogation may have left us in a state where the same basic * block has the same register as a phi operand and a result. In this case, the register in the * phi operand always refers value before any other phis have executed. */ public void scheduleMovesFromPhis() { if (movesFromPhisAtBeginning > 1) { List<SsaInsn> toSchedule; toSchedule = insns.subList(0, movesFromPhisAtBeginning); scheduleUseBeforeAssigned(toSchedule); SsaInsn firstNonPhiMoveInsn = insns.get(movesFromPhisAtBeginning); /* * TODO: It's actually possible that this case never happens, * because a move-exception block, having only one predecessor in * SSA form, perhaps is never on a dominance frontier. */ if (firstNonPhiMoveInsn.isMoveException()) { if (true) { /* * We've yet to observe this case, and if it can occur the * code written to handle it probably does not work. */ throw new RuntimeException("Unexpected: moves from " + "phis before move-exception"); } else { /* * A move-exception insn must be placed first in this block * We need to move it there, and deal with possible * interference. */ boolean moveExceptionInterferes = false; int moveExceptionResult = firstNonPhiMoveInsn.getResult().getReg(); /* * Does the move-exception result reg interfere with the phi * moves? */ for (SsaInsn insn : toSchedule) { if (insn.isResultReg(moveExceptionResult) || insn.isRegASource(moveExceptionResult)) { moveExceptionInterferes = true; break; } } if (!moveExceptionInterferes) { // This is the easy case. insns.remove(movesFromPhisAtBeginning); insns.add(0, firstNonPhiMoveInsn); } else { /* * We need to move the result to a spare reg and move it * back. */ RegisterSpec originalResultSpec = firstNonPhiMoveInsn.getResult(); int spareRegister = parent.borrowSpareRegister(originalResultSpec.getCategory()); // We now move it to a spare register. firstNonPhiMoveInsn.changeResultReg(spareRegister); RegisterSpec tempSpec = firstNonPhiMoveInsn.getResult(); insns.add(0, firstNonPhiMoveInsn); // And here we move it back. NormalSsaInsn toAdd = new NormalSsaInsn( new PlainInsn( Rops.opMove(tempSpec.getType()), SourcePosition.NO_INFO, originalResultSpec, RegisterSpecList.make(tempSpec)), this); /* * Place it immediately after the phi-moves, overwriting * the move-exception that was there. */ insns.set(movesFromPhisAtBeginning + 1, toAdd); } } } } if (movesFromPhisAtEnd > 1) { scheduleUseBeforeAssigned( insns.subList(insns.size() - movesFromPhisAtEnd - 1, insns.size() - 1)); } // Return registers borrowed here and in scheduleUseBeforeAssigned(). parent.returnSpareRegisters(); }
/** * Ensures that all move operations in this block occur such that reads of any register happen * before writes to that register. NOTE: caller is expected to returnSpareRegisters()! TODO: See * Briggs, et al "Practical Improvements to the Construction and Destruction of Static Single * Assignment Form" section 5. a) This can be done in three passes. * * @param toSchedule List of instructions. Must consist only of moves. */ private void scheduleUseBeforeAssigned(List<SsaInsn> toSchedule) { BitSet regsUsedAsSources = new BitSet(parent.getRegCount()); // TODO: Get rid of this. BitSet regsUsedAsResults = new BitSet(parent.getRegCount()); int sz = toSchedule.size(); int insertPlace = 0; while (insertPlace < sz) { int oldInsertPlace = insertPlace; // Record all registers used as sources in this block. for (int i = insertPlace; i < sz; i++) { setRegsUsed(regsUsedAsSources, toSchedule.get(i).getSources().get(0)); setRegsUsed(regsUsedAsResults, toSchedule.get(i).getResult()); } /* * If there are no circular dependencies, then there exists n * instructions where n > 1 whose result is not used as a source. */ for (int i = insertPlace; i < sz; i++) { SsaInsn insn = toSchedule.get(i); /* * Move these n registers to the front, since they overwrite * nothing. */ if (!checkRegUsed(regsUsedAsSources, insn.getResult())) { Collections.swap(toSchedule, i, insertPlace++); } } /* * If we've made no progress in this iteration, there's a circular * dependency. Split it using the temp reg. */ if (oldInsertPlace == insertPlace) { SsaInsn insnToSplit = null; // Find an insn whose result is used as a source. for (int i = insertPlace; i < sz; i++) { SsaInsn insn = toSchedule.get(i); if (checkRegUsed(regsUsedAsSources, insn.getResult()) && checkRegUsed(regsUsedAsResults, insn.getSources().get(0))) { insnToSplit = insn; /* * We're going to split this insn; move it to the front. */ Collections.swap(toSchedule, insertPlace, i); break; } } // At least one insn will be set above. RegisterSpec result = insnToSplit.getResult(); RegisterSpec tempSpec = result.withReg(parent.borrowSpareRegister(result.getCategory())); NormalSsaInsn toAdd = new NormalSsaInsn( new PlainInsn( Rops.opMove(result.getType()), SourcePosition.NO_INFO, tempSpec, insnToSplit.getSources()), this); toSchedule.add(insertPlace++, toAdd); RegisterSpecList newSources = RegisterSpecList.make(tempSpec); NormalSsaInsn toReplace = new NormalSsaInsn( new PlainInsn( Rops.opMove(result.getType()), SourcePosition.NO_INFO, result, newSources), this); toSchedule.set(insertPlace, toReplace); // The size changed. sz = toSchedule.size(); } regsUsedAsSources.clear(); regsUsedAsResults.clear(); } }
/** * Updates all uses of various consts to use the values in the newly assigned registers. * * @param newRegs {@code non-null;} mapping between constant and new reg * @param origRegCount {@code >=0;} original SSA reg count, not including newly added constant * regs */ private void updateConstUses(HashMap<TypedConstant, RegisterSpec> newRegs, int origRegCount) { /* * set of constants associated with a local variable; used only if * COLLECT_ONE_LOCAL is true. */ final HashSet<TypedConstant> usedByLocal = new HashSet<TypedConstant>(); final ArrayList<SsaInsn>[] useList = ssaMeth.getUseListCopy(); for (int i = 0; i < origRegCount; i++) { SsaInsn insn = ssaMeth.getDefinitionForRegister(i); if (insn == null) { continue; } final RegisterSpec origReg = insn.getResult(); TypeBearer typeBearer = insn.getResult().getTypeBearer(); if (!typeBearer.isConstant()) continue; TypedConstant cst = (TypedConstant) typeBearer; final RegisterSpec newReg = newRegs.get(cst); if (newReg == null) { continue; } if (ssaMeth.isRegALocal(origReg)) { if (!COLLECT_ONE_LOCAL) { continue; } else { /* * TODO: If the same local gets the same cst multiple times, * it would be nice to reuse the register. */ if (usedByLocal.contains(cst)) { continue; } else { usedByLocal.add(cst); fixLocalAssignment(origReg, newRegs.get(cst)); } } } // maps an original const register to the new collected register RegisterMapper mapper = new RegisterMapper() { @Override public int getNewRegisterCount() { return ssaMeth.getRegCount(); } @Override public RegisterSpec map(RegisterSpec registerSpec) { if (registerSpec.getReg() == origReg.getReg()) { return newReg.withLocalItem(registerSpec.getLocalItem()); } return registerSpec; } }; for (SsaInsn use : useList[origReg.getReg()]) { if (use.canThrow() && use.getBlock().getSuccessors().cardinality() > 1) { continue; } use.mapSourceRegisters(mapper); } } }
/** * Gets all of the collectable constant values used in this method, sorted by most used first. * Skips non-collectable consts, such as non-string object constants * * @return {@code non-null;} list of constants in most-to-least used order */ private ArrayList<TypedConstant> getConstsSortedByCountUse() { int regSz = ssaMeth.getRegCount(); final HashMap<TypedConstant, Integer> countUses = new HashMap<TypedConstant, Integer>(); /* * Each collected constant can be used by just one local (used only if * COLLECT_ONE_LOCAL is true). */ final HashSet<TypedConstant> usedByLocal = new HashSet<TypedConstant>(); // Count how many times each const value is used. for (int i = 0; i < regSz; i++) { SsaInsn insn = ssaMeth.getDefinitionForRegister(i); if (insn == null || insn.getOpcode() == null) continue; RegisterSpec result = insn.getResult(); TypeBearer typeBearer = result.getTypeBearer(); if (!typeBearer.isConstant()) continue; TypedConstant cst = (TypedConstant) typeBearer; // Find defining instruction for move-result-pseudo instructions if (insn.getOpcode().getOpcode() == RegOps.MOVE_RESULT_PSEUDO) { int pred = insn.getBlock().getPredecessors().nextSetBit(0); ArrayList<SsaInsn> predInsns; predInsns = ssaMeth.getBlocks().get(pred).getInsns(); insn = predInsns.get(predInsns.size() - 1); } if (insn.canThrow()) { /* * Don't move anything other than strings -- the risk of * changing where an exception is thrown is too high. */ if (!(cst instanceof CstString) || !COLLECT_STRINGS) { continue; } /* * We can't move any throwable const whose throw will be caught, * so don't count them. */ if (insn.getBlock().getSuccessors().cardinality() > 1) { continue; } } /* * TODO: Might be nice to try and figure out which local wins most * when collected. */ if (ssaMeth.isRegALocal(result)) { if (!COLLECT_ONE_LOCAL) { continue; } else { if (usedByLocal.contains(cst)) { // Count one local usage only. continue; } else { usedByLocal.add(cst); } } } Integer has = countUses.get(cst); if (has == null) { countUses.put(cst, 1); } else { countUses.put(cst, has + 1); } } // Collect constants that have been reused. ArrayList<TypedConstant> constantList = new ArrayList<TypedConstant>(); for (Map.Entry<TypedConstant, Integer> entry : countUses.entrySet()) { if (entry.getValue() > 1) { constantList.add(entry.getKey()); } } // Sort by use, with most used at the beginning of the list. Collections.sort( constantList, new Comparator<Constant>() { public int compare(Constant a, Constant b) { int ret; ret = countUses.get(b) - countUses.get(a); if (ret == 0) { /* * Provide sorting determinisim for constants with same * usage count. */ ret = a.compareTo(b); } return ret; } @Override public boolean equals(Object obj) { return obj == this; } }); return constantList; }