/**
   * Clip out a section of the arm, using internal parameter values
   *
   * @param c0 : start of section to clip out
   * @param c1 : end of section to clip out; if < c0, c0 & c1 are swapped
   */
  private void clip0(double c0, double c1) {
    final boolean db = false;

    if (c0 > c1) {
      double t = c0;
      c0 = c1;
      c1 = t;
    }

    // array to store new clip elements in
    DArray nc = new DArray();

    if (db) {
      System.out.println("clip " + Tools.f(c0) + "..." + Tools.f(c1));
    }

    for (int i = 0; i < visSeg.size(); i += 2) {

      double t0 = visSeg.getDouble(i), t1 = visSeg.getDouble(i + 1);
      if (db) {

        System.out.println(" seg " + i + " " + Tools.f(t0) + "..." + Tools.f(t1));
      }

      // if this seg is outside clip region, leave intact (add it)
      if (t0 >= c1 || t1 <= c0) {
        nc.addDouble(t0);
        nc.addDouble(t1);
        continue;
      }

      if (t0 >= c0 && t1 <= c1) {
        if (db) {
          System.out.println("  clipping entire segment");
        }
        // remove entire segment, by skipping it
        continue;
      }

      // add unclipped portion
      if (t0 < c0) {
        nc.addDouble(t0);
        nc.addDouble(c0);
      }
      if (t1 > c1) {
        nc.addDouble(c1);
        nc.addDouble(t1);
      }
    }
    visSeg = nc;
    if (db) {
      System.out.println(" after clipping:" + visSeg);
    }
  }
  /**
   * Determine closest point on hyperbolic arm to a point pt
   *
   * @param pt : point
   * @return t value for closest point; not necessarily within clipped range
   */
  public double closestPointTo(FPoint2 pt) {

    final boolean db = false;

    pt = toCurveSpace(pt, null);

    double U = B + 1;
    double V = -pt.y;
    double W = B * pt.x;

    Polyn p =
        new Polyn( //
            B * U * U, //
            2 * B * U * V, //
            B * V * V + A * U * U - W * W, //
            2 * A * U * V, //
            A * V * V //
            );

    if (db) Streams.out.println("closestPointTo, pt=" + pt + "\n" + p);
    double ret = 0;

    try {
      DArray r = new DArray();

      if (Math.abs(p.c(0)) < 1e-5) r.addDouble(0);
      else p.solve(r);

      if (r.isEmpty()) {
        throw new FPError("can't find closest point, poly=\n" + p);
      }

      double bestDist = 0;

      for (int i = 0; i < r.size(); i++) {
        double t = r.getDouble(i);
        FPoint2 apt = calcPoint(t);
        double dist = apt.distance(pt);
        if (i == 0 || dist < bestDist) {
          bestDist = dist;
          ret = t;
        }
      }
    } catch (FPError e) {
      Tools.warn("caught FPError");
      //      Streams.out.println("caught:\n" + e);
      ret = (this.minParameter() + this.maxParameter()) * .5;
    }

    return ret;
  }
  /**
   * Calc possible hull from a set of polygons
   *
   * @param polySet set of polygons
   * @param first first polygon to include
   * @param last last polygon to include
   * @return polygon containing possible hull
   */
  private static EdPolygon calcPHullRange(EdPolygon[] polySet, int first, int last) {
    final boolean db = true;
    int len = last + 1 - first;
    if (len == 1) return polySet[first];
    if (len > 2) {
      if (db && T.update()) {
        DArray a = new DArray();
        for (int i = first; i <= last; i++) a.add(polySet[i]);
        T.msg("calc possible hull of multiple polygons" + T.show(a, MyColor.cRED, STRK_THICK, -1));
      }

      int n = len / 2;
      return calcPHull(
          calcPHullRange(polySet, first, first + n - 1), calcPHullRange(polySet, first + n, last));
    }

    return calcPHull(polySet[first], polySet[first + 1]);
  }
Beispiel #4
0
  /**
   * Build an array of <? extends {@link solver.variables.Variable}>. </br>WARNING: array's indice
   * are from 1 to n.
   *
   * @param name name of the array of variables.</br> Each variable is named like {@code name}_i.
   * @param type {@link parser.flatzinc.ast.declaration.DArray} object.
   * @param earr array of {@link parser.flatzinc.ast.expression.Expression}
   * @param map
   * @param solver
   */
  private static void buildWithDArray(
      String name,
      DArray type,
      Expression expression,
      EArray earr,
      THashMap<String, Object> map,
      Solver solver) {
    final DInt2 index = (DInt2) type.getIndex(0);
    // no need to get lowB, it is always 1 (see specification of FZN for more informations)
    final int size = index.getUpp();
    final Declaration what = type.getWhat();

    switch (what.typeOf) {
      case BOOL:
        final BoolVar[] bs = new BoolVar[size];
        for (int i = 0; i < size; i++) {
          bs[i] = earr.getWhat_i(i).boolVarValue(solver);
        }
        map.put(name, bs);
        break;
      case INT:
      case INT2:
      case INTN:
        final IntVar[] vs = new IntVar[size];
        for (int i = 0; i < size; i++) {
          vs[i] = earr.getWhat_i(i).intVarValue(solver);
        }
        map.put(name, vs);
        break;
      case SET:
        //                final SetVariable[] svs = new SetVariable[size];
        //                for (int i = 0; i < size; i++) {
        //                    svs[i] = earr.getWhat_i(i).setVarValue();
        //                }
        //                map.put(name, svs);
        Exit.log("SET VAR");
        break;
      default:
        break;
    }
  }
  /**
   * Convert array of hyperbolas to hyperbolas with single connected range
   *
   * @param h1
   * @return
   */
  public static Hyperbola[] singlify(Hyperbola[] h1) {
    DArray e = new DArray();
    for (int i = 0; i < h1.length; i++) {
      Hyperbola hi = h1[i];

      if (hi.visSeg.size() == 1) {
        e.add(hi);
      } else {
        for (int j = 0; j < hi.visSeg.size(); j += 2) {
          double t0 = hi.visSeg.getDouble(j + 0);
          double t1 = hi.visSeg.getDouble(j + 1);
          Hyperbola h = new Hyperbola(hi);
          h.visSeg.clear();
          h.visSeg.addDouble(t0);
          h.visSeg.addDouble(t1);
          e.add(h);
        }
      }
    }
    return (Hyperbola[]) e.toArray(Hyperbola.class);
  }
  /**
   * Find intersections of hyperbolic arm with a line.
   *
   * @param s0 : first point on line
   * @param s1 : second point on line
   * @param ipts : intersection points returned here
   */
  public DArray findLineIntersect(FPoint2 s0, FPoint2 s1, DArray ipts) {
    if (ipts == null) ipts = new DArray();
    ipts.clear();

    // transform both line points to curve space

    FPoint2 c0 = toCurveSpace(s0, null), c1 = toCurveSpace(s1, null);

    double a = c0.x, b = c0.y, c = c1.x, d = c1.y;

    double e = d - b;
    double f = c - a;

    double D = f * f - B * e * e;
    double E = 2 * a * f - 2 * b * B * e;
    double F = a * a - A - B * b * b;
    Polyn q = new Polyn(D, E, F);

    DArray roots = new DArray();
    q.solve(roots);

    for (int i = 0; i < roots.size(); i++) {
      double k = roots.getDouble(i);
      FPoint2 pt =
          //      ipts.add(
          new FPoint2(s0.x + (s1.x - s0.x) * k, s0.y + (s1.y - s0.y) * k);
      //      );

      // Make sure this point is actually on the arm.
      FPoint2 cpt = toCurveSpace(pt, null);
      if (cpt.x < 0) {
        continue;
      }
      ipts.add(pt);
    }
    return ipts;
  }
  /**
   * Find intersections of hyperbolic arm with an axes-aligned line segment. Arm must intersect
   * segment, not its underlying (infinite) line. The intersection points are sorted into increasing
   * parameter values w.r.t. the arm.
   *
   * @param s0 : start of line segment
   * @param s1 : end of line segment
   * @param ipts : intersection points returned here
   * @param reverseOrder : if true, points are sorted by decreasing parameter values
   * @param dbFlag : true to print debug information
   */
  public void findOrthogonalIntersect(
      FPoint2 s0, FPoint2 s1, DArray ipts, boolean reverseOrder, boolean dbFlag) {

    final boolean db = true && dbFlag;

    if (db) {
      System.out.println(
          "findOrthogonalIntersect " + s0 + " -> " + s1 + " rev:" + Tools.f(reverseOrder));
    }

    // Determine whether this is a vertical or horizontal line segment.

    boolean vert = (Math.abs(s1.y - s0.y) > Math.abs(s1.x - s0.x));
    if (db) {
      System.out.println(" vert=" + Tools.f(vert));
    }

    // Find the quadratic to solve.
    Polyn p;
    PlaneCurve cv = getCurve();
    if (vert) {
      p = cv.solveForX(s0.x);
    } else {
      p = cv.solveForY(s0.y);
    }

    DArray lst = new DArray();
    p.solve(lst);

    if (db) {
      System.out.println(" curve=" + cv.toString(true));
      System.out.println(" polyn=" + p.toString(true));
      System.out.println(" roots=" + Tools.d(lst));
    }

    // Sort points, discarding those not on line segment,
    // and those not on the correct arm.
    ipts.clear();

    for (int i = 0; i < lst.size(); i++) {
      double ta = lst.getDouble(i);
      FPoint2 pt;
      if (vert) {
        pt = new FPoint2(s0.x, ta);
      } else {
        pt = new FPoint2(ta, s0.y);
      }

      if (db) {
        System.out.println(" position on arm for ta=" + ta + " is " + pt);
      }
      double t = MyMath.positionOnSegment(pt, s0, s1);
      if (db) {
        System.out.println("  pt=" + pt + " t=" + t);
      }
      if (t < 0 || t > 1) {
        if (db) {
          System.out.println("   not on segment, skipping");
        }
        continue;
      }

      FPoint2 cpt = toCurveSpace(pt, null);
      if (db) {
        System.out.println("  curveSpace=" + cpt);
      }
      if (cpt.x < 0) {
        if (db) {
          System.out.println("   skipping...");
        }
        continue;
      }

      double t1 = calcParameter(pt);
      int j = 0;
      while (true) {
        if (j == ipts.size()) {
          break;
        }
        double t2 = calcParameter(ipts.getFPoint2(j));
        if (!reverseOrder) {
          if (t1 < t2) {
            break;
          }
        } else if (t1 > t2) {
          break;
        }
        j++;
      }
      ipts.add(j, pt);
    }
    if (db) {
      System.out.println(" ipts=" + Tools.d(ipts));
    }
  }
  public void render(Color c, int stroke, int markType) {
    final boolean db = false;
    // Get array of visible segments.  If no such array exists,
    // use default.
    DArray vseg = visSeg;
    boolean dashed = false;

    //    if (step == 0) {
    double step = renderStep();
    //    }
    //    vp V = TestBed.view();

    if (db) Streams.out.println(" step=" + step);

    // plot each visible segment

    for (int seg = 0; seg < vseg.size(); seg += 2) {
      double t0 = vseg.getDouble(seg + 0), t1 = vseg.getDouble(seg + 1);
      t0 = MyMath.clamp(t0, -500.0, 500.0);
      t1 = MyMath.clamp(t1, -500.0, 500.0);

      // render() expects external parameters.

      double s0 = toExt(t0), s1 = toExt(t1);
      if (s0 > s1) {
        double tmp = s0;
        s0 = s1;
        s1 = tmp;
      }
      FPoint2 p0 = calcPoint(s0), p1 = calcPoint(s1);
      if (db) Streams.out.println(" p0=" + p0 + ", p1=" + p1);
      if (isLine() && !dashed) {
        V.drawLine(p0, p1);
      } else {

        /*
                  if (Math.abs(s0) >= 500
           ||Math.abs(s1) >= 500)
         System.out.println("Rendering "+t0+" to "+t1+" step "+step);
        */
        if (dashed) V.pushStroke(Globals.STRK_RUBBERBAND);
        {
          //          int count = 0;
          boolean first = true;
          for (double t = t0; ; t += step) { // , count++) {
            boolean last = (t >= t1);
            if (last) {
              t = t1;
            }
            calcPointInternal(t, p1);

            if (!p1.isValid()) {
              if (last) {
                break;
              }
              continue;
            }

            if (db) {
              System.out.println(" calcPt " + Tools.f(toExt(t)) + " = " + p1.x + "," + p1.y);
            }
            if (!first) {
              V.drawLine(p0, p1);
              if (false) {
                Tools.warn("highlighting int");
                V.mark(p0);
              }
            }
            if (last) {
              break;
            }
            p0.setLocation(p1);
            first = false;
          }
        }
        if (dashed) V.popStroke();
      }
    }
  }
  /**
   * Find intersections between two hyperbolas
   *
   * @param a Hyperbola
   * @param b Hyperbola
   * @param iPts where to store intersection points; null to construct
   */
  public static DArray findIntersections(Hyperbola a, Hyperbola b, DArray iPts) {
    final boolean db = false;

    if (iPts == null) iPts = new DArray();
    iPts.clear();
    final DArray jPts = new DArray();
    // a.initClipIfNec();
    //    b.initClipIfNec();
    if (db) {
      System.out.println(
          "finding intersections between:\n" + a.toString(true) + "\n" + b.toString(true));
    }

    PlaneCurve.findIntersect(a.getCurve(), b.getCurve(), jPts);

    // filter out false intersections
    if (db) {
      System.out.println("prefilter # intersections= " + jPts.size());
    }

    FPoint2 ptc = new FPoint2();

    for (int i = 0; i < jPts.size(); i++) {
      FPoint2 pt = jPts.getFPoint2(i);

      // make sure calculated intersect point is actually on both arms
      {
        FPoint2 data = a.calcParameterAndDistance(pt);
        if (data.y > .001) continue;
        data = b.calcParameterAndDistance(pt);
        if (data.y > .001) continue;
      }

      if (!a.isLine()) {
        // put in curve space to verify it's to the right of the y axis
        a.toCurveSpace(pt, ptc);
        if (db) {
          System.out.println("Filter " + i + " in curveA= " + ptc);
        }
        if (ptc.x <= 0) {
          if (db) {
            System.out.println(" < 0");
          }
          continue;
        }
      }
      if (!b.isLine()) {
        b.toCurveSpace(pt, ptc);
        if (db) {
          System.out.println("        in curveB= " + ptc);
        }
        if (ptc.x <= 0) {
          if (db) {
            System.out.println(" < 0");
          }
          continue;
        }
      }
      if (db) {
        System.out.println(" adding " + pt);
      }
      iPts.add(pt);
    }
    return iPts;
  }
  /**
   * Constructor
   *
   * @param f1 FPoint2
   * @param f2 FPoint2
   * @param pt FPoint2, or null for bisector
   */
  private void construct(FPoint2 f1, FPoint2 f2, FPoint2 pt) {

    //    userData[LEFT] = new DArray();
    //    userData[RIGHT]  =new DArray();

    final boolean db = false;
    if (db) {
      System.out.println("Hyperbola constructor\n f1=" + f1 + "\n f2=" + f2 + "\n pt=" + pt);
    }
    boolean bisector = (pt == null);
    initializeVisibleSegments();

    // if point on arm is closer to f2 than f1, swap f1 & f2.

    if (!bisector && FPoint2.distanceSquared(f1, pt) > FPoint2.distanceSquared(f2, pt)) {
      flipped = true;
    }

    this.foci[RIGHT] = new FPoint2(f1);
    this.foci[LEFT] = new FPoint2(f2);
    if (!bisector) {
      this.pt = new FPoint2(pt);
    }

    double fociDist = FPoint2.distance(f1, f2);
    if (fociDist == 0) {
      throw new FPError("Hyperbola foci are same point");
    }

    c = fociDist * .5;

    // calculate the translation of the hyperbola away from
    // standard position.

    FPoint2 rFocus = getFocus(0), lFocus = getFocus(1);

    origin = new FPoint2(.5 * (rFocus.x + lFocus.x), .5 * (rFocus.y + lFocus.y));

    // calculate the angle of rotation of the hyperbola away
    // from the standard position.

    double theta = Math.atan2(rFocus.y - lFocus.y, rFocus.x - lFocus.x);

    Matrix fromCenterInW = Matrix.getTranslate(origin, true);
    Matrix rotToE = Matrix.getRotate(-theta);

    toE2 = rotToE;
    Matrix.mult(toE2, fromCenterInW, toE2);
    // calculate inverse

    toW2 = toE2.invert(null);

    //      Matrix toCenterInW = Matrix.translationMatrix(origin, false);
    //      Matrix rotToW = Matrix.getRotate2D(theta);
    //
    //      toW2 = toCenterInW;
    //      Matrix.mult(toW2, rotToW, toW2);
    //      Tools.warn("just invert matrix here");
    //

    if (bisector) {
      valid = true;
    } else {
      // get the arm point in hyperbola space.
      FPoint2 workPt = toE2.apply(pt, null);

      double xs = workPt.x * workPt.x;
      double cs = c * c;

      Polyn q = new Polyn(1, -(cs + xs + workPt.y * workPt.y), cs * xs);
      if (db) {
        System.out.println("a2 quadratic:\n" + q);
      }
      final DArray qsoln = new DArray();
      q.solve(qsoln);
      if (db) {
        Streams.out.println(qsoln);
      }
      double val = q.c(1) * -.5;
      int ql = qsoln.size();
      if (ql >= 1) {
        val = qsoln.getDouble(0);
      }

      // choose the root that is less than c*c.

      if (ql == 2) {
        if (val > qsoln.getDouble(1)) {
          val = qsoln.getDouble(1);
          if (db) {
            System.out.println(" two roots, choosing smaller.");
          }
        }
      }
      if (db) {
        System.out.println(" root chosen=" + val);
      }

      a = Polyn.sqrt(val);
      A = a * a;
      B = A / (c * c - A);
    }
    valid = true;
    if (db) {
      System.out.println(" ==> " + this);
    }
  }
Beispiel #11
0
  private static void test_dds() {
    System.out.println("DDS test:");

    DataDDS table = new DataDDS(new ServerVersion(2, 16));
    table.setName("test_table");

    // add variables to it
    DUInt32 myUInt = new DUInt32("myUInt");
    myUInt.setValue(42);
    table.addVariable(myUInt);

    // note that arrays and lists take their name from the addVariable method
    DArray myArray = new DArray();
    myArray.addVariable(new DByte("myArray"));
    myArray.appendDim(10, "dummy");
    myArray.setLength(10);
    BytePrimitiveVector bpv = (BytePrimitiveVector) myArray.getPrimitiveVector();
    for (int i = 0; i < 10; i++) bpv.setValue(i, (byte) (i * 10));
    table.addVariable(myArray);

    DList myList = new DList();
    myList.addVariable(new DURL("myList"));
    myList.setLength(10);
    BaseTypePrimitiveVector btpv = (BaseTypePrimitiveVector) myList.getPrimitiveVector();
    for (int i = 0; i < 10; i++) {
      DURL testURL = new DURL();
      testURL.setValue("http://" + i);
      btpv.setValue(i, testURL);
    }
    table.addVariable(myList);

    DStructure myStructure = new DStructure("myStructure");
    DFloat64 structFloat = new DFloat64("structFloat");
    structFloat.setValue(42.0);
    myStructure.addVariable(structFloat);
    DString structString = new DString("structString");
    structString.setValue("test value");
    myStructure.addVariable(structString);
    table.addVariable(myStructure);

    DGrid myGrid = new DGrid("myGrid");
    DArray gridArray = (DArray) myArray.clone();
    gridArray.setName("gridArray");
    myGrid.addVariable(gridArray, DGrid.ARRAY);
    DArray gridMap = new DArray();
    gridMap.addVariable(new DInt32("gridMap"));
    gridMap.appendDim(10, "dummy");
    gridMap.setLength(10);
    Int32PrimitiveVector ipv = (Int32PrimitiveVector) gridMap.getPrimitiveVector();
    for (int i = 0; i < 10; i++) ipv.setValue(i, i * 10);
    myGrid.addVariable(gridMap, DGrid.MAPS);
    table.addVariable(myGrid);

    // this is the one case where two DODS variables can have the same name:
    // each row should have the same exact variables (name doesn't matter)
    DSequence mySequence = new DSequence("mySequence");
    mySequence.addVariable(new DInt32("seqInt32"));
    mySequence.addVariable(new DString("seqString"));
    Vector seqRow = new Vector(); // a row of the sequence
    DInt32 seqVar1 = new DInt32("seqInt32");
    seqVar1.setValue(1);
    seqRow.addElement(seqVar1);
    DString seqVar2 = new DString("seqString");
    seqVar2.setValue("string");
    seqRow.addElement(seqVar2);
    mySequence.addRow(seqRow);
    seqRow = new Vector(); // add a second row
    seqVar1 = new DInt32("seqInt32");
    seqVar1.setValue(3);
    seqRow.addElement(seqVar1);
    seqVar2 = new DString("seqString");
    seqVar2.setValue("another string");
    seqRow.addElement(seqVar2);
    mySequence.addRow(seqRow);
    table.addVariable(mySequence);

    try {
      table.checkSemantics();
      System.out.println("DDS passed semantic check");
    } catch (BadSemanticsException e) {
      System.out.println("DDS failed semantic check:\n" + e);
    }

    try {
      table.checkSemantics(true);
      System.out.println("DDS passed full semantic check");
    } catch (BadSemanticsException e) {
      System.out.println("DDS failed full semantic check:\n" + e);
    }

    // print the declarations
    System.out.println("declarations:");
    table.print(System.out);

    // print the data
    System.out.println("\nData:");
    table.printVal(System.out);
    System.out.println();

    // and read it programmatically
    try {
      int testValue1 = ((DUInt32) table.getVariable("myUInt")).getValue();
      System.out.println("myUInt = " + testValue1);
      byte testValue2 =
          ((BytePrimitiveVector) ((DArray) table.getVariable("myArray")).getPrimitiveVector())
              .getValue(5);
      System.out.println("myArray[5] = " + testValue2);
      String testValue3 =
          ((DString)
                  ((BaseTypePrimitiveVector)
                          ((DList) table.getVariable("myList")).getPrimitiveVector())
                      .getValue(5))
              .getValue();
      System.out.println("myList[5] = " + testValue3);
      double testValue4 =
          ((DFloat64) ((DStructure) table.getVariable("myStructure")).getVariable("structFloat"))
              .getValue();
      System.out.println("myStructure.structFloat = " + testValue4);
      int testValue5 =
          ((Int32PrimitiveVector)
                  ((DArray) ((DGrid) table.getVariable("myGrid")).getVariable("gridMap"))
                      .getPrimitiveVector())
              .getValue(5);
      System.out.println("myGrid.gridMap[5] = " + testValue5);
      String testValue7 =
          ((DString) ((DSequence) table.getVariable("mySequence")).getVariable(0, "seqString"))
              .getValue();
      System.out.println("mySequence[0].seqString = " + testValue7);
    } catch (NoSuchVariableException e) {
      System.out.println("Error getting variable:\n" + e);
    }
    System.out.println();

    DataDDS table2 = (DataDDS) table.clone(); // test Cloneable interface
    try {
      table2.checkSemantics();
      System.out.println("DDS passed semantic check");
    } catch (BadSemanticsException e) {
      System.out.println("DDS failed semantic check:\n" + e);
    }

    try {
      table2.checkSemantics(true);
      System.out.println("DDS passed full semantic check");
    } catch (BadSemanticsException e) {
      System.out.println("DDS failed full semantic check:\n" + e);
    }

    // print the declarations and data
    System.out.println("clone declarations:");
    table2.print(System.out);
    System.out.println("\nData:");
    table2.printVal(System.out);
    System.out.println();

    // add some values to the original table
    DInt32 myNewInt = new DInt32("myNewInt");
    myNewInt.setValue(420);
    table.addVariable(myNewInt);

    // verify that they aren't in the cloned table
    try {
      DInt32 testInt = (DInt32) table2.getVariable("myNewInt");
      System.out.println("Error: value from table in table2");
    } catch (NoSuchVariableException e) {
      System.out.println("Variable cloning looks good");
    }
  }
Beispiel #12
0
 /**
  * Build an array of <? extends {@link solver.variables.Variable}>. </br>WARNING: array's indice
  * are from 1 to n.
  *
  * @param name name of the array of variables.</br> Each variable is named like {@code name}_i.
  * @param type {@link parser.flatzinc.ast.declaration.DArray} object.
  * @param map
  * @param solver
  */
 private static void buildWithDArray(
     String name,
     DArray type,
     Expression expression,
     THashMap<String, Object> map,
     Solver solver) {
   final DInt2 index = (DInt2) type.getIndex(0);
   // no need to get lowB, it is always 1 (see specification of FZN for more informations)
   final int size = index.getUpp();
   final Declaration what = type.getWhat();
   final IntVar[] vs;
   switch (what.typeOf) {
     case BOOL:
       BoolVar[] bs = new BoolVar[size];
       if (expression == null) {
         for (int i = 1; i <= size; i++) {
           bs[i - 1] = buildWithBool(name + '_' + i, expression, map, solver);
         }
       } else if (expression.getTypeOf().equals(Expression.EType.ARR)) {
         EArray array = (EArray) expression;
         // build the array
         for (int i = 0; i < size; i++) {
           bs[i] = array.getWhat_i(i).boolVarValue(solver);
         }
       }
       map.put(name, bs);
       break;
     case INT:
       vs = new IntVar[size];
       if (expression == null) {
         for (int i = 1; i <= size; i++) {
           vs[i - 1] = buildWithInt(name + '_' + i, null, map, solver);
         }
       } else if (expression.getTypeOf().equals(Expression.EType.ARR)) {
         buildFromIntArray(vs, (EArray) expression, size, solver);
       }
       map.put(name, vs);
       break;
     case INT2:
       vs = new IntVar[size];
       if (expression == null) {
         for (int i = 1; i <= size; i++) {
           vs[i - 1] = buildWithInt2(name + '_' + i, (DInt2) what, expression, map, solver);
         }
       } else if (expression.getTypeOf().equals(Expression.EType.ARR)) {
         buildFromIntArray(vs, (EArray) expression, size, solver);
       }
       map.put(name, vs);
       break;
     case INTN:
       vs = new IntVar[size];
       if (expression == null) {
         for (int i = 1; i <= size; i++) {
           vs[i - 1] = buildWithManyInt(name + '_' + i, (DManyInt) what, expression, map, solver);
         }
       } else if (expression.getTypeOf().equals(Expression.EType.ARR)) {
         buildFromIntArray(vs, (EArray) expression, size, solver);
       }
       map.put(name, vs);
       break;
     case SET:
       //                final SetVariable[] svs = new SetVariable[size];
       //                for (int i = 1; i <= size; i++) {
       //                    svs[i - 1] = buildWithSet(name + '_' + i, (DSet) what, map);
       //                }
       //                map.put(name, svs);
       Exit.log("SET VAR");
       break;
     default:
       break;
   }
 }
  private static void OLDexpandHull(
      PtEntry convHullEntry, PtEntry aHull, PtEntry bHull, boolean ccw) {
    boolean db__OLD = C.vb(DB_HULLEXPAND);
    if (db__OLD && T.update()) T.msg("expandHull" + T.show(convHullEntry) + " ccw=" + ccw);

    PtEntry[] opp = new PtEntry[2];
    opp[0] = aHull;
    opp[1] = bHull;

    PtEntry old____hEnt = convHullEntry;
    boolean advanced = false;
    do {
      if (old____hEnt != convHullEntry) advanced = true;
      inf.update();
      if (old____hEnt.source() == null) {
        if (db__OLD && T.update())
          T.msg("expandHull, source unknown, guaranteed not convex" + T.show(old____hEnt));
        old____hEnt = old____hEnt.next(ccw);
        continue;
      }

      int w = (old____hEnt.source() == opp[0].source()) ? 1 : 0;
      PtEntry oppEnt = opp[w];

      boolean isTangent =
          !COper3.right(old____hEnt, oppEnt, oppEnt.next(true), ccw)
              && !COper3.right(old____hEnt, oppEnt, oppEnt.prev(true), ccw);

      if (!isTangent) {
        if (db__OLD && T.update())
          T.msg(
              "expandHull, advance tangent line"
                  + T.show(oppEnt.toPolygon(), MyColor.cDARKGRAY, -1, MARK_X)
                  + T.show(old____hEnt)
                  + tl(old____hEnt, oppEnt));
        opp[w] = oppEnt.next(ccw);
        continue;
      }

      if (COper3.left(old____hEnt, oppEnt, old____hEnt.next(ccw), ccw)
          && COper3.left(old____hEnt, oppEnt, old____hEnt.prev(ccw), ccw)) {
        DArray dispPts = new DArray();

        // delete points until cross tangent line
        PtEntry next = old____hEnt.next(ccw);
        while (true) {
          PtEntry prev = next;
          dispPts.add(prev);
          next = prev.delete(ccw);

          inf.update();
          if (COper3.right(old____hEnt, oppEnt, next, ccw)) {
            FPoint2 cross = MyMath.linesIntersection(old____hEnt, oppEnt, prev, next, null);
            old____hEnt = old____hEnt.insert(new PtEntry(cross), ccw);
            if (db__OLD && T.update())
              T.msg(
                  "expandHull, clipped to shadow region"
                      + tl(old____hEnt, oppEnt)
                      + T.show(old____hEnt)
                      + T.show(dispPts));
            break;
          }
        }
      } else {
        if (db__OLD && T.update())
          T.msg(
              "expandHull, not dipping into shadow region"
                  + T.show(old____hEnt.next(ccw))
                  + tl(old____hEnt, oppEnt));
      }
      old____hEnt = old____hEnt.next(ccw);
    } while (!advanced || old____hEnt != convHullEntry);
  }
  /**
   * Apply hull expansion procedure
   *
   * @param convHullEntry an entry of the hull (should be on the convex hull, so it is not deleted
   *     or replaced and is still valid for subsequent calls)
   * @param aHull entry on convex hull of polygon A
   * @param bHull entry on convex hull of polygon B
   * @param ccw true to move in ccw direction, else cw
   */
  private static void expandHull(PtEntry convHullEntry, PtEntry aHull, PtEntry bHull, boolean ccw) {
    if (C.vb(OLDMETHOD)) {
      OLDexpandHull(convHullEntry, aHull, bHull, ccw);
      return;
    }
    boolean db = C.vb(DB_HULLEXPAND);

    if (db && T.update()) T.msg("expandHull" + T.show(convHullEntry) + " ccw=" + ccw);

    // tangent points for A, B
    PtEntry[] tangentPoints = new PtEntry[2];
    tangentPoints[0] = aHull;
    tangentPoints[1] = bHull;

    PtEntry hEnt = convHullEntry;
    do {
      inf.update();

      // calculate tangent ray R
      PtEntry tangentPt = null;
      while (true) {
        int tanIndex = (hEnt.source() == tangentPoints[0].source()) ? 1 : 0;
        tangentPt = tangentPoints[tanIndex];

        if (!COper3.right(hEnt, tangentPt, tangentPt.next(true), ccw)
            && !COper3.right(hEnt, tangentPt, tangentPt.prev(true), ccw)) break;

        tangentPt = tangentPt.next(ccw);

        if (db && T.update())
          T.msg(
              "expandHull, advance tangent line"
                  + T.show(tangentPt.toPolygon(), MyColor.cDARKGRAY, -1, MARK_DISC)
                  + T.show(hEnt)
                  + tl(hEnt, tangentPt));
        tangentPoints[tanIndex] = tangentPt;
      }

      if (COper3.left(hEnt, tangentPt, hEnt.next(ccw), ccw)) {
        DArray dispPts = new DArray();

        // delete points until cross tangent line
        PtEntry next = hEnt.next(ccw);
        while (true) {
          PtEntry prev = next;
          dispPts.add(prev);
          next = prev.delete(ccw);
          if (COper3.right(hEnt, tangentPt, next, ccw)) {
            FPoint2 cross = MyMath.linesIntersection(hEnt, tangentPt, prev, next, null);
            hEnt = hEnt.insert(new PtEntry(cross), ccw);
            if (db && T.update())
              T.msg(
                  "expandHull, clipped to shadow region"
                      + tl(hEnt, tangentPt)
                      + T.show(hEnt)
                      + T.show(dispPts));
            break;
          }
        }
      } else {
        if (db && T.update())
          T.msg(
              "expandHull, not dipping into shadow region"
                  + T.show(hEnt.next(ccw))
                  + tl(hEnt, tangentPt));
      }
      while (true) {
        hEnt = hEnt.next(ccw);
        if (COper3.left(hEnt.prev(ccw), hEnt, hEnt.next(ccw), ccw)) break;
        if (db && T.update()) T.msg("skipping reflex vertex" + T.show(hEnt));
      }
    } while (hEnt != convHullEntry);
  }